Browse Source

Eval für 2022 geschrieben. Soweit fertig, muss noch etwas poliert werden

master
Bennet krebs 5 months ago
parent
commit
774887b1bb
  1. 2
      .idea/FINO2_data_evaluation.iml
  2. 2
      .idea/misc.xml
  3. 318
      code/calendar_plot.py
  4. 8
      code/endbericht_awac_direktauslese.py
  5. 60
      code/endbericht_microcats_direktauslese.py
  6. 116
      code/plot_insida_exports.py
  7. 23617
      data/evaluation_data_2022/FINO2 AWAC-Seegang 2022-05-31-2022-11-10 1668074588027.csv

2
.idea/FINO2_data_evaluation.iml

@ -2,7 +2,7 @@
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="Python 3.10 (data_evaluation)" jdkType="Python SDK" />
<orderEntry type="jdk" jdkName="Python 3.10 (FINO2_data_evaluation)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

2
.idea/misc.xml

@ -1,6 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.10 (data_evaluation)" project-jdk-type="Python SDK" />
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.10 (FINO2_data_evaluation)" project-jdk-type="Python SDK" />
<component name="PyCharmProfessionalAdvertiser">
<option name="shown" value="true" />
</component>

318
code/calendar_plot.py

@ -0,0 +1,318 @@
import pandas as pd
import matplotlib.pyplot as plt
import datetime
import math
import numpy as np
def add_coverage(dataframe, time_list, measurement_variable: str, start_datetime: str,
end_datetime: str, value=1.0): # format: "2022-12-22 18:00"
time_begin = datetime.datetime.strptime(start_datetime, "%Y-%m-%d %H:%M")
time_end = datetime.datetime.strptime(end_datetime, "%Y-%m-%d %H:%M")
FFF = time_list.index(time_begin)
GGG = time_list.index(time_end)
dataframe.loc[FFF: GGG, measurement_variable] = value
return dataframe
def make_start_df():
date1 = '2022-01-01 00:00'
date2 = '2022-12-31 23:50'
my_dates = pd.date_range(date1, date2, freq="1H").tolist()
coverage_df = pd.DataFrame()
coverage_df['datetimes']= my_dates
return coverage_df, my_dates
def get_realtime_from_seconds(seconds):
result= datetime.datetime(2000,1,1) + datetime.timedelta(seconds=seconds)
print(result)
return result
def plot_results(coverage_df):
coverage_df= coverage_df.set_index('datetimes')
coverage_df.plot()
plt.show()
def get_awac_export(coverage_df,showfig=True):
AWAC_seegang_df = pd.read_csv(
r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\Insida_exports\Insida_exp FINO2 Seegang_klein 2022-01-01-2022-12-28.csv")
B = [datetime.datetime.strptime(a, '%Y-%m-%d %H:%M:%S') for a in list(AWAC_seegang_df["date"])]
AWAC_seegang_df["date"] = B
AWAC_redu = AWAC_seegang_df.iloc[range(0, len(AWAC_seegang_df), 6)]
current_coverage_insida = []
wave_coverage_insida = []
for element in AWAC_redu['ADCPEW (21.0m)']:
if math.isnan(element):
current_coverage_insida.append(np.nan)
else:
current_coverage_insida.append(25.0)
for element in AWAC_redu['SG_HS (0.0m)']:
if math.isnan(element):
wave_coverage_insida.append(np.nan)
else:
wave_coverage_insida.append(26.0)
seegang_coverage = pd.DataFrame()
seegang_coverage['date']= AWAC_redu['date'].tolist()
seegang_coverage['current']=current_coverage_insida
seegang_coverage['wave']=wave_coverage_insida
#add data from old awac
seegang_coverage.loc[0:3616,'current']=24.9
seegang_coverage.loc[0:3616,'wave']=25.9
current_counter=0
for element in seegang_coverage['current']:
if not math.isnan(element):
current_counter+=1
coverage_current= current_counter / len(seegang_coverage)
counter_wave=0
for element in seegang_coverage['wave']:
if not math.isnan(element):
counter_wave+=1
coverage_wave= counter_wave / len(seegang_coverage)
if showfig:
plt.figure()
plt.plot(seegang_coverage['date'], seegang_coverage['current'], label = 'current')
plt.plot(seegang_coverage['date'], seegang_coverage['wave'], label='wave')
plt.legend()
plt.show()
coverage_df['wave']=seegang_coverage['wave']
coverage_df['current']=seegang_coverage['current']
return coverage_df, coverage_wave, coverage_current
def sami_ph(coverage_df, datetimes):
var_name='pH (6m)raw'
begin_date="2022-03-02 13:00"
end_date="2022-04-24 23:00"
coverage_df = add_coverage(coverage_df, datetimes, var_name, begin_date, end_date, value=5.0)
begin_date = "2022-07-03 13:00"
end_date = "2022-08-11 19:00"
coverage_df = add_coverage(coverage_df, datetimes, var_name, begin_date, end_date, value=5.0)
counter_pH=0
for element in coverage_df['pH (6m)raw']:
if not math.isnan(element):
counter_pH+=1
coverage_pH= counter_pH / len(coverage_df)
return coverage_df, coverage_pH
def get_wqm_coverage(coverage_df, datetimes, showfig=True):
WQM_1H_df = pd.read_csv(
r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\Insida_exports\Insida_exp FINO2 WQM_1H 2022-01-01-2022-12-28.csv")
B = [datetime.datetime.strptime(a, '%Y-%m-%d %H:%M:%S') for a in list(WQM_1H_df["date"])]
WQM_1H_df["date"] = B
counter_2m = 0
for element in WQM_1H_df['CHL (2.0m)']:
if not math.isnan(element):
counter_2m += 1
coverage_2m = counter_2m / len(WQM_1H_df)
counter_12m = 0
for element in WQM_1H_df['CHL (12.0m)']:
if not math.isnan(element):
counter_12m += 1
coverage_12m = counter_12m / len(WQM_1H_df)
counter_20m = 0
for element in WQM_1H_df['CHL (20.0m)']:
if not math.isnan(element):
counter_20m += 1
coverage_20m = counter_20m / len(WQM_1H_df)
wqm2m_coverage_insida = []
for element in WQM_1H_df['CHL (2.0m)']:
if math.isnan(element):
wqm2m_coverage_insida.append(np.nan)
else:
wqm2m_coverage_insida.append(-2.0)
wqm12m_coverage_insida = []
for element in WQM_1H_df['CHL (12.0m)']:
if math.isnan(element):
wqm12m_coverage_insida.append(np.nan)
else:
wqm12m_coverage_insida.append(-12.0)
wqm20m_coverage_insida = []
for element in WQM_1H_df['CHL (20.0m)']:
if math.isnan(element):
wqm20m_coverage_insida.append(np.nan)
else:
wqm20m_coverage_insida.append(-20.0)
coverage_wqm = {
"2m":coverage_2m,
"12m":coverage_12m,
"20m":coverage_20m
}
coverage_df['WQM_2m'] = np.nan
coverage_df['WQM_12m'] = np.nan
coverage_df['WQM_20m'] = np.nan
coverage_df.loc[0:len(wqm2m_coverage_insida)-1,'WQM_2m'] = wqm2m_coverage_insida
coverage_df.loc[0:len(wqm2m_coverage_insida)-1,'WQM_12m'] = wqm12m_coverage_insida
coverage_df.loc[0:len(wqm2m_coverage_insida)-1,'WQM_20m'] = wqm20m_coverage_insida
if showfig:
plt.figure()
plt.plot(WQM_1H_df['date'], WQM_1H_df['CHL (2.0m)'], label="CHL 2m")
plt.plot(WQM_1H_df['date'], WQM_1H_df['CHL (12.0m)'], label="CHL 12m")
plt.plot(WQM_1H_df['date'], WQM_1H_df['CHL (20.0m)'], label="CHL 20m")
plt.show()
return coverage_df, coverage_wqm
def get_mc_coverage(coverage_df, datetimes, showfig=True):
CTD_nurDruck_df = pd.read_csv(
r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\Insida_exports\Insida_exp_FINO2 D 2022-01-01-2022-12-28.csv")
B = [datetime.datetime.strptime(a, '%Y-%m-%d %H:%M:%S') for a in list(CTD_nurDruck_df["date"])]
CTD_nurDruck_df["date"] = B
coverage_mc={
"2m":0.0,
"4m":0.0,
"6m":0.0,
"8m":0.0,
"10m":0.0,
"12m":0.0,
"14m":0.0,
"16m":0.0,
"18m":0.0,
"20m":0.0,
}
get_colmns = ['WP (2.0m)', 'WP (4.0m)', 'WP (6.0m)', 'WP (8.0m)', 'WP (10.0m)', 'WP (12.0m)', 'WP (14.0m)', 'WP (16.0m)', 'WP (18.0m)', 'WP (20.0m)']
get_dict_posi= ['2m', '4m', '6m', '8m', '10m', '12m', '14m', '16m', '18m', '20m']
set_colmns = ['MC_2m', 'MC_4m', 'MC_6m', 'MC_8m', 'MC_10m', 'MC_12m', 'MC_14m', 'MC_16m', 'MC_18m', 'MC_20m']
values = [x + 0.0 for x in [2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0]]
for idx,ele in enumerate(set_colmns):
coverage_df[ele] = np.nan
temp_cover = []
for element in CTD_nurDruck_df[get_colmns[idx]]:
if math.isnan(element):
temp_cover.append(np.nan)
else:
temp_cover.append(values[idx])
coverage_df.loc[0:len(temp_cover) - 1, set_colmns[idx]] = temp_cover
# 2m MC raw
var_name= "MC (2m)raw"
begin_date = "2022-03-02 13:00"
end_date = "2022-10-20 06:00"
coverage_df = add_coverage(coverage_df, datetimes, var_name, begin_date, end_date, value=1.8)
# 4m MC raw
var_name = "MC (4m)raw"
begin_date = "2022-03-02 13:00"
end_date = "2022-04-10 02:00"
coverage_df = add_coverage(coverage_df, datetimes, var_name, begin_date, end_date, value=3.8)
begin_date = "2022-05-31 13:00"
end_date = "2022-10-06 00:00"
coverage_df = add_coverage(coverage_df, datetimes, var_name, begin_date, end_date, value=3.8)
# 6m MC raw
var_name = "MC (6m)raw"
begin_date = "2022-03-02 13:00"
end_date = "2022-05-08 13:00"
coverage_df = add_coverage(coverage_df, datetimes, var_name, begin_date, end_date, value=5.8)
begin_date = "2022-05-31 13:00"
end_date = "2022-10-20 06:00"
coverage_df = add_coverage(coverage_df, datetimes, var_name, begin_date, end_date, value=5.8)
# 8m MC raw
var_name = "MC (8m)raw"
begin_date = "2022-03-02 13:00"
end_date = "2022-10-20 06:00"
coverage_df = add_coverage(coverage_df, datetimes, var_name, begin_date, end_date, value=7.8)
# 10m MC raw
var_name = "MC (10m)raw"
begin_date = "2022-03-02 13:00"
end_date = "2022-10-20 06:00"
coverage_df = add_coverage(coverage_df, datetimes, var_name, begin_date, end_date, value=9.8)
# 12m MC raw
var_name = "MC (12m)raw"
begin_date = "2022-03-02 13:00"
end_date = "2022-10-20 06:00"
coverage_df = add_coverage(coverage_df, datetimes, var_name, begin_date, end_date, value=11.8)
# 14m MC raw
var_name = "MC (14m)raw"
begin_date = "2022-03-02 13:00"
end_date = "2022-10-20 06:00"
coverage_df = add_coverage(coverage_df, datetimes, var_name, begin_date, end_date, value=13.8)
# 16m MC raw
var_name = "MC (16m)raw"
begin_date = "2022-03-02 13:00"
end_date = "2022-05-16 11:00"
coverage_df = add_coverage(coverage_df, datetimes, var_name, begin_date, end_date, value=15.8)
begin_date = "2022-06-10 08:00"
end_date = "2022-10-20 06:00"
coverage_df = add_coverage(coverage_df, datetimes, var_name, begin_date, end_date, value=15.8)
# 18m MC raw
var_name = "MC (18m)raw"
begin_date = "2022-03-02 13:00"
end_date = "2022-10-20 06:00"
coverage_df = add_coverage(coverage_df, datetimes, var_name, begin_date, end_date, value=17.8)
# 20m MC raw
var_name = "MC (20m)raw"
begin_date = "2022-03-02 13:00"
end_date = "2022-10-20 06:00"
coverage_df = add_coverage(coverage_df, datetimes, var_name, begin_date, end_date, value=19.8)
# -------------------
i1=['MC_2m', 'MC_4m', 'MC_6m', 'MC_8m', 'MC_10m', 'MC_12m', 'MC_14m', 'MC_16m', 'MC_18m', 'MC_20m']
i2=['MC (2m)raw', 'MC (4m)raw', 'MC (6m)raw', 'MC (8m)raw', 'MC (10m)raw', 'MC (12m)raw', 'MC (14m)raw', 'MC (16m)raw', 'MC (18m)raw', 'MC (20m)raw']
i3=['MC_2m_combi', 'MC_4m_combi', 'MC_6m_combi', 'MC_8m_combi', 'MC_10m_combi', 'MC_12m_combi', 'MC_14m_combi', 'MC_16m_combi', 'MC_18m_combi', 'MC_20m_combi']
values=[x+0.2 for x in[2.0,4.0,6.0,8.0,10.0,12.0,14.0,16.0,18.0,20.0]]
for ixd,step in enumerate(i1):
temp_list = []
for ind, element in enumerate(coverage_df[step]):
if not math.isnan(element):
temp_list.append(values[ixd])
elif not math.isnan(coverage_df[i2[ixd]][ind]):
temp_list.append(values[ixd])
else:
temp_list.append(np.nan)
coverage_df[i3[ixd]]=temp_list
for idx,ele in enumerate(get_colmns):
temp_counter = 0
for element in CTD_nurDruck_df[get_colmns[idx]]:
if not math.isnan(element):
temp_counter += 1
coverage_mc[get_dict_posi[idx]] = temp_counter / len(CTD_nurDruck_df)
return coverage_df, coverage_mc
if __name__ == '__main__':
coverage_df, datetimes = make_start_df()
coverage_df, coverage_wave, coverage_current = get_awac_export(coverage_df, showfig=False)
coverage_df, coverage_pH = sami_ph(coverage_df, datetimes)
coverage_df, coverage_wqm = get_wqm_coverage(coverage_df, datetimes, showfig=False)
coverage_df, coverage_mc = get_mc_coverage(coverage_df, datetimes, showfig=True)
plot_results(coverage_df)
print("")
print("pH coverage: " + str(coverage_pH))
print("wave coverage: " + str(coverage_wave))
print("current coverage: " + str(coverage_current))
print("WQM coverage (2,12,20m): " + str(coverage_wqm))
print("MC coverage (2-20m): " + str(coverage_mc))

8
code/endbericht_awac_direktauslese.py

@ -1,8 +1,6 @@
from datetime import datetime
import glob
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
def load_csv(file_path_in):
@ -19,16 +17,12 @@ def load_csv(file_path_in):
cols = awac_data_df.columns.tolist()
cols = cols[-1:] + cols[:-1]
awac_data_df = awac_data_df[cols]
awac_raw_data_2022_df = awac_data_df.loc[12423:16035, ['DateTime', 'Speed#20(21.7m)']]
#y=['Pressure','Heading','Pitch','Battery', 'Speed#1(2.8m)','Speed#2(3.8m)','Speed#3(4.7m)' ]
y=awac_data_list[0][40:-1]
fig = px.line(awac_data_df, x="DateTime", y=y, markers="x", range_x= [12423,16200])
fig.show()
print("")

60
code/endbericht_microcats_direktauslese.py

@ -1,14 +1,20 @@
from datetime import datetime
import datetime
import numpy as np
import time
import glob
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
import matplotlib.pyplot as plt
def secondsSince2000_toDatetime(ss2000):
return datetime.datetime(2000,1,1)+ datetime.timedelta(seconds =ss2000)
def load_cnv(file_path_in):
with open(file_path_in) as f:
raw_data = f.readlines()
AAA = raw_data[293:]
AAA = raw_data[300:]
BBB = [i.strip().split(" ") for i in AAA]
CTD_data =[]
@ -16,40 +22,27 @@ def load_cnv(file_path_in):
CCC = [i.strip() for i in line]
CTD_data.append([g for g in CCC if g.strip()])
CTD_data_df= pd.DataFrame(CTD_data, columns=['C','T','D','JulianDays','unknown']).apply(pd.to_numeric)
if len(CTD_data[0])==5:
CTD_data_df= pd.DataFrame(CTD_data, columns=['C','T','D','JulianDays','unknown']).apply(pd.to_numeric)
elif len(CTD_data[0])==8:
CTD_data_df = pd.DataFrame(CTD_data, columns=['seconds_since_2000','T', 'C', 'D', 'sal', 'oxsat','density','flag']).apply(pd.to_numeric)
CTD_data_df['date']=CTD_data_df['seconds_since_2000'].apply(secondsSince2000_toDatetime)
return CTD_data_df
def plotstuff(ctd_raw_data):
"""y = ['C']
line_plots=[
go.Line(x=ctd_raw_data["2m"]['JulianDays'], y=ctd_raw_data['2m'][y], name='2m'),
go.Line(x=ctd_raw_data["4m"]['JulianDays'], y=ctd_raw_data['4m'][y], name='4m')
]
fig = go.Figure(data=line_plots)
fig.show()"""
y=['D']
fig = px.line(ctd_raw_data['2m'], x="JulianDays", y=y)
fig.add_scatter(ctd_raw_data['4m'], x="JulianDays", y=y)
fig.show()
print("")
def main():
ctd_raw_data = {}
file_path_in = r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\MCs_2022_okt\2m\SBE37-IM_03709795_2022_10_28.cnv"
file_path_in = r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\MCs_2022_okt\02m\SBE37-IM_03709795_2022_10_28.cnv"
ctd_raw_data["2m"] = load_cnv(file_path_in)
file_path_in = r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\MCs_2022_okt\4m\SBE37-IM_03709796_2022_10_28.cnv"
file_path_in = r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\MCs_2022_okt\04m\SBE37-IM_03709796_2022_10_28.cnv"
ctd_raw_data["4m"] = load_cnv(file_path_in)
file_path_in = r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\MCs_2022_okt\6m\SBE37-IM_03709797_2022_10_28.cnv"
file_path_in = r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\MCs_2022_okt\06m\SBE37-IM_03709797_2022_10_28.cnv"
ctd_raw_data["6m"] = load_cnv(file_path_in)
file_path_in = r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\MCs_2022_okt\8m\SBE37-IM_03709798_2022_10_28.cnv"
file_path_in = r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\MCs_2022_okt\08m\SBE37-IM_03709798_2022_10_28.cnv"
ctd_raw_data["8m"] = load_cnv(file_path_in)
file_path_in = r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\MCs_2022_okt\10m\SBE37-IM_03709799_2022_10_28.cnv"
ctd_raw_data["10m"] = load_cnv(file_path_in)
@ -64,7 +57,20 @@ def main():
file_path_in = r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\MCs_2022_okt\20m\SBE37-IM_03709804_2022_10_28.cnv"
ctd_raw_data["20m"] = load_cnv(file_path_in)
plotstuff(ctd_raw_data)
#plotstuff(ctd_raw_data)
fig3 = plt.figure()
plt.plot(ctd_raw_data['2m']['date'], ctd_raw_data['2m']['D'], label="2m")
plt.plot(ctd_raw_data['4m']['date'], ctd_raw_data['4m']['D'], label="4m")
plt.plot(ctd_raw_data['6m']['date'], ctd_raw_data['6m']['D'], label="6m")
plt.plot(ctd_raw_data['8m']['date'], ctd_raw_data['8m']['D'], label="8m")
plt.plot(ctd_raw_data['10m']['date'], ctd_raw_data['10m']['D'], label="10m")
plt.plot(ctd_raw_data['12m']['date'], ctd_raw_data['12m']['D'], label="12m")
plt.plot(ctd_raw_data['14m']['date'], ctd_raw_data['14m']['D'], label="14m")
plt.plot(ctd_raw_data['16m']['date'], ctd_raw_data['16m']['D'], label="16m")
plt.plot(ctd_raw_data['18m']['date'], ctd_raw_data['18m']['D'], label="18m")
plt.plot(ctd_raw_data['20m']['date'], ctd_raw_data['20m']['D'], label="20m")
plt.show()
if __name__ == '__main__':

116
code/plot_insida_exports.py

@ -0,0 +1,116 @@
from datetime import datetime
import pandas as pd
import matplotlib.pyplot as plt
import math
import numpy as np
def plot_MC_export(CTD_nurDruck_df):
fig = plt.figure()
plt.plot(CTD_nurDruck_df['date'], CTD_nurDruck_df['WP (2.0m)'], label="2m")
plt.plot(CTD_nurDruck_df['date'], CTD_nurDruck_df['WP (4.0m)'], label="4m")
plt.plot(CTD_nurDruck_df['date'], CTD_nurDruck_df['WP (6.0m)'], label="6m")
plt.plot(CTD_nurDruck_df['date'], CTD_nurDruck_df['WP (8.0m)'], label="8m")
plt.plot(CTD_nurDruck_df['date'], CTD_nurDruck_df['WP (10.0m)'], label="10m")
plt.plot(CTD_nurDruck_df['date'], CTD_nurDruck_df['WP (12.0m)'], label="12m")
plt.plot(CTD_nurDruck_df['date'], CTD_nurDruck_df['WP (14.0m)'], label="14m")
plt.plot(CTD_nurDruck_df['date'], CTD_nurDruck_df['WP (16.0m)'], label="16m")
plt.plot(CTD_nurDruck_df['date'], CTD_nurDruck_df['WP (18.0m)'], label="18m")
plt.plot(CTD_nurDruck_df['date'], CTD_nurDruck_df['WP (20.0m)'], label="20m")
plt.show()
def plot_WQM_1h_export(WQM_1H_df):
plt.figure()
plt.plot(WQM_1H_df['date'], WQM_1H_df['CHL (2.0m)'], label="CHL 2m")
plt.plot(WQM_1H_df['date'], WQM_1H_df['CHL (12.0m)'], label="CHL 12m")
plt.plot(WQM_1H_df['date'], WQM_1H_df['CHL (20.0m)'], label="CHL 20m")
plt.show()
def plot_WQM_10min_export(WQM_10m_df):
plt.figure()
plt.plot(WQM_10m_df['date'], WQM_10m_df['OX_MCODO (2.0m)'], label="OX 2m")
plt.plot(WQM_10m_df['date'], WQM_10m_df['OX_MCODO (12.0m)'], label="OX 12m")
plt.plot(WQM_10m_df['date'], WQM_10m_df['OX_MCODO (20.0m)'], label="OX 20m")
plt.show()
def load_export_data():
print("loading data...")
AWAC_seegang_df = pd.read_csv(
r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\Insida_exports\Insida_exp FINO2 Seegang_klein 2022-01-01-2022-12-28.csv")
CTD_df = pd.read_csv(
r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\Insida_exports\Insida_exp_FINO2 CTD 2021-08-01-2022-11-09 1667984812085.csv")
CTD_nurDruck_df = pd.read_csv(
r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\Insida_exports\Insida_exp_FINO2 D 2022-01-01-2022-12-28.csv")
WQM_1H_df = pd.read_csv(
r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\Insida_exports\Insida_exp FINO2 WQM_1H 2022-01-01-2022-12-28.csv")
WQM_10m_df = pd.read_csv(
r"D:\Python\FINO2_data_evaluation\data\evaluation_data_2022\Insida_exports\Insida_exp_FINO2_10m O2 2022-01-01-2022-12-28.csv")
B = [datetime.strptime(a, '%Y-%m-%d %H:%M:%S') for a in list(AWAC_seegang_df["date"])]
AWAC_seegang_df["date"] = B
B = [datetime.strptime(a, '%Y-%m-%d %H:%M:%S') for a in list(CTD_df["date"])]
CTD_df["date"] = B
B = [datetime.strptime(a, '%Y-%m-%d %H:%M:%S') for a in list(CTD_nurDruck_df["date"])]
CTD_nurDruck_df["date"] = B
B = [datetime.strptime(a, '%Y-%m-%d %H:%M:%S') for a in list(WQM_1H_df["date"])]
WQM_1H_df["date"] = B
B = [datetime.strptime(a, '%Y-%m-%d %H:%M:%S') for a in list(WQM_10m_df["date"])]
WQM_10m_df["date"] = B
return AWAC_seegang_df,CTD_df,CTD_nurDruck_df,WQM_1H_df,WQM_10m_df
def plot_seegang_export(AWAC_seegang_df):
BB= range(0,52127,6)
AWAC_redu = AWAC_seegang_df.iloc[BB]
current_data=[]
wave_data=[]
x_axis= range(0,len(AWAC_redu))
for element in AWAC_redu['ADCPEW (21.0m)']:
if math.isnan(element):
current_data.append(np.nan)
else:
current_data.append(1)
for element in AWAC_redu['SG_HS (0.0m)']:
if math.isnan(element):
wave_data.append(np.nan)
else:
wave_data.append(2)
plt.figure()
plt.plot(AWAC_redu['date'],wave_data)
plt.plot(AWAC_redu['date'],current_data)
plt.show()
plt.figure()
plt.plot(AWAC_redu['date'], AWAC_redu['ADCPEW (21.0m)'], label="ADCPEW 21m")
#plt.plot(AWAC_redu['date'], AWAC_redu['SG_DirTp (0.0m)'], label="SG_DirTp")
#plt.plot(AWAC_redu['date'], AWAC_redu['SG_TP (0.0m)'], label="SG_TP")
plt.plot(AWAC_redu['date'], AWAC_redu['SG_HS (0.0m)'], label="SG_HS")
plt.legend()
plt.show()
if __name__ == '__main__':
AWAC_seegang_df,CTD_df,CTD_nurDruck_df,WQM_1H_df,WQM_10m_df = load_export_data()
plot_seegang_export(AWAC_seegang_df)
#plot_MC_export(CTD_nurDruck_df)
#plot_WQM_1h_export(WQM_1H_df)
#plot_WQM_10min_export(WQM_10m_df)
print("")

23617
data/evaluation_data_2022/FINO2 AWAC-Seegang 2022-05-31-2022-11-10 1668074588027.csv

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save