Browse Source

added ENA data mining slides 13.12.2022

master
chassenr 6 months ago
parent
commit
c156f90445
  1. 11
      Microbio_practical_2022/R_script_practical.R
  2. BIN
      workshop_ENA_metadata_20221213.pdf

11
Microbio_practical_2022/R_script_practical.R

@ -52,7 +52,7 @@ TAX <- read.table(
# sample metadata (experimental conditions)
META <- read.table(
"results_read_run_tsv.txt",
"results_read_run_tsv_20221018.txt",
h = T,
sep = "\t"
)
@ -67,6 +67,11 @@ str(META)
# RNA and DNA level in the same sample. We need the DNA (library source = METAGENOMIC) data here.
META <- META[META$library_source == "METAGENOMIC" & META$sample_title %in% colnames(ASV),]
META$fastq_ftp
plotQualityProfile("ERR7719921_1.fastq.gz")
plotQualityProfile("ERR7719921_2.fastq.gz")
# Now we can set the sample title as row names
rownames(META) <- META$sample_title
@ -213,10 +218,10 @@ mtext(text = "Sequencing depth", side = 1, line = 2.5)
# Bray-Curtis dissimilarity
bc <- vegdist(t(ASV.rel), method = "bray")
bc
# Jaccard dissimilarity
jc <- vegdist(t(ASV.rel), method = "jaccard", binary = T)
jc
# How similar are the samples to each other?
# What is the difference in the interpretation between the 2 dissimilarity measures?

BIN
workshop_ENA_metadata_20221213.pdf

Binary file not shown.
Loading…
Cancel
Save