diff --git a/accronyms.tex b/accronyms.tex index 3079c73..a91443f 100644 --- a/accronyms.tex +++ b/accronyms.tex @@ -6,6 +6,11 @@ } \newcommand{\rmse}{\ac{rmse}} +\DeclareAcronym{cdo}{ + short=CDO, + long=Climate Data Operators, +} +\newcommand{\cdo}{\ac{cdo}} \DeclareAcronym{hpc}{ short=HPC, diff --git a/all.bib b/all.bib index 6c99791..de4fbe2 100644 --- a/all.bib +++ b/all.bib @@ -1,3 +1,47 @@ + +@misc{schulzweida_uwe_2019_2558193, + author = {Schulzweida, Uwe}, + title = {CDO User Guide}, + month = feb, + year = 2019, + doi = {10.5281/zenodo.2558193}, + url = {https://doi.org/10.5281/zenodo.2558193} +} + +@book{python3, + author = {Van Rossum, Guido and Drake, Fred L.}, + title = {Python 3 Reference Manual}, + year = {2009}, + isbn = {1441412697}, + publisher = {CreateSpace}, + address = {Scotts Valley, CA} +} + +@book{markdown-guide, + title={R markdown: The definitive guide}, + author={Xie, Yihui and Allaire, Joseph J and Grolemund, Garrett}, + year={2018}, + publisher={CRC Press} +} + +@book{kluyver2016jupyter, + title={Jupyter Notebooks-a publishing format for reproducible computational workflows.}, + author={Kluyver, Thomas and Ragan-Kelley, Benjamin and P{\'e}rez, Fernando and Granger, Brian E and Bussonnier, Matthias and Frederic, Jonathan and Kelley, Kyle and Hamrick, Jessica B and Grout, Jason and Corlay, Sylvain and others}, + volume={2016}, + year={2016} +} + +@article{rew1990netcdf, + title={NetCDF: an interface for scientific data access}, + author={Rew, Russ and Davis, Glenn}, + journal={IEEE computer graphics and applications}, + volume={10}, + number={4}, + pages={76--82}, + year={1990}, + publisher={IEEE} +} + @book{RN3096, title = {Summary of Research and Results from the ENSEMBLES Project}, publisher = {Met Office Hadley Centre}, @@ -153,7 +197,7 @@ http://norden.diva-portal.org/smash/get/diva2:767673/PREVIEW01.jpg}, volume = {11}, number = {1}, pages = {11826}, - abstract = {The European Union has set ambitious CO2 reduction targets, stimulating renewable energy production and accelerating deployment of offshore wind energy in northern European waters, mainly the North Sea. With increasing size and clustering, offshore wind farms (OWFs) wake effects, which alter wind conditions and decrease the power generation efficiency of wind farms downwind become more important. We use a high-resolution regional climate model with implemented wind farm parameterizations to explore offshore wind energy production limits in the North Sea. We simulate near future wind farm scenarios considering existing and planned OWFs in the North Sea and assess power generation losses and wind variations due to wind farm wake. The annual mean wind speed deficit within a wind farm can reach 2–2.5 ms−1 depending on the wind farm geometry. The mean deficit, which decreases with distance, can extend 35–40 km downwind during prevailing southwesterly winds. Wind speed deficits are highest during spring (mainly March–April) and lowest during November–December. The large-size of wind farms and their proximity affect not only the performance of its downwind turbines but also that of neighboring downwind farms, reducing the capacity factor by 20% or more, which increases energy production costs and economic losses. We conclude that wind energy can be a limited resource in the North Sea. The limits and potentials for optimization need to be considered in climate mitigation strategies and cross-national optimization of offshore energy production plans are inevitable.}, + abstract = {The European Union has set ambitious CO2 reduction targets, stimulating renewable energy production and accelerating deployment of offshore wind energy in northern European waters, mainly the North Sea. With increasing size and clustering, offshore wind farms (OWFs) wake effects, which alter wind conditions and decrease the power generation efficiency of wind farms downwind become more important. We use a high-resolution regional climate model with implemented wind farm parameterizations to explore offshore wind energy production limits in the North Sea. We simulate near future wind farm scenarios considering existing and planned OWFs in the North Sea and assess power generation losses and wind variations due to wind farm wake. The annual mean wind speed deficit within a wind farm can reach 2–2.5 ms−1 depending on the wind farm geometry. The mean deficit, which decreases with distance, can extend 35–40 km downwind during prevailing southwesterly winds. Wind speed deficits are highest during spring (mainly March–April) and lowest during November–December. The large-size of wind farms and their proximity affect not only the performance of its downwind turbines but also that of neighboring downwind farms, reducing the capacity factor by 20% or more, which increases energy production costs and economic losses. We conclude that wind energy can be a limited resource in the North Sea. The limits and potentials for optimization need to be considered in climate mitigation strategies and cross-national optimization of offshore energy production plans are inevitable.}, ISSN = {2045-2322}, DOI = {https://doi.org/10.1038/s41598-021-91283-3}, url = {https://doi.org/10.1038/s41598-021-91283-3}, @@ -343,7 +387,7 @@ Baltic Sea}, volume = {21}, number = {4}, pages = {1395-1406}, - abstract = {Abstract Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones.}, + abstract = {Abstract Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones.}, ISSN = {1354-1013}, DOI = {https://doi.org/10.1111/gcb.12754}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.12754}, @@ -401,7 +445,7 @@ Baltic Sea}, volume = {44}, number = {3}, pages = {345-356}, - abstract = {Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2–4 °C warming and 50–80 % decrease in ice cover by 2100. Precipitation may increase ~30 % in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants and decreased salinity. Coupled physical–biogeochemical models indicate that, in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, thus promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favored by AOM, while phytoplankton production may be reduced. Extra trophic levels in the food web may increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider the effects of climate change on the ecosystem dynamics and functions, as well as the effects of anthropogenic nutrient and pollutant load. Monitoring should have a holistic approach, encompassing both autotrophic (phytoplankton) and heterotrophic (e.g., bacterial) processes.}, + abstract = {Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2–4 °C warming and 50–80 % decrease in ice cover by 2100. Precipitation may increase ~30 % in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants and decreased salinity. Coupled physical–biogeochemical models indicate that, in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, thus promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favored by AOM, while phytoplankton production may be reduced. Extra trophic levels in the food web may increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider the effects of climate change on the ecosystem dynamics and functions, as well as the effects of anthropogenic nutrient and pollutant load. Monitoring should have a holistic approach, encompassing both autotrophic (phytoplankton) and heterotrophic (e.g., bacterial) processes.}, ISSN = {1654-7209}, DOI = {https://doi.org/10.1007/s13280-015-0654-8}, url = {https://doi.org/10.1007/s13280-015-0654-8}, @@ -578,7 +622,7 @@ Baltic Sea}, volume = {39}, number = {2}, pages = {126-135}, - abstract = {Ongoing eutrophication is changing the Baltic Sea ecosystem. Aquaculture causes relatively small-scale nutrient emissions, but local environmental impact may be considerable. We used substance flow analysis (SFA) to identify and quantify the most significant flows and stocks of nitrogen (N) and phosphorus (P) related to rainbow trout aquaculture in Finland. In 2004–2007, the input of nutrients to the system in the form of fish feed was 829 t N year−1 and 115 t P year−1. Around one-fifth of these nutrients ended up as food for human consumption. Of the primary input, 70% ended up in the Baltic Sea, directly from aquaculture and indirectly through waste management. The nutrient cycle could be closed partially by using local fish instead of imported fish in rainbow trout feed, thus reducing the net load of N and P to a fraction.}, + abstract = {Ongoing eutrophication is changing the Baltic Sea ecosystem. Aquaculture causes relatively small-scale nutrient emissions, but local environmental impact may be considerable. We used substance flow analysis (SFA) to identify and quantify the most significant flows and stocks of nitrogen (N) and phosphorus (P) related to rainbow trout aquaculture in Finland. In 2004–2007, the input of nutrients to the system in the form of fish feed was 829 t N year−1 and 115 t P year−1. Around one-fifth of these nutrients ended up as food for human consumption. Of the primary input, 70% ended up in the Baltic Sea, directly from aquaculture and indirectly through waste management. The nutrient cycle could be closed partially by using local fish instead of imported fish in rainbow trout feed, thus reducing the net load of N and P to a fraction.}, ISSN = {1654-7209}, DOI = {https://doi.org/10.1007/s13280-010-0024-5}, url = {https://doi.org/10.1007/s13280-010-0024-5}, @@ -689,7 +733,7 @@ Gulf of Finland}, volume = {26}, number = {12}, pages = {1780-1797}, - abstract = {Abstract Aim The introduction of aquatic non-indigenous species (ANS) has become a major driver for global changes in species biogeography. We examined spatial patterns and temporal trends of ANS detections since 1965 to inform conservation policy and management. Location Global. Methods We assembled an extensive dataset of first records of detection of ANS (1965–2015) across 49 aquatic ecosystems, including the (a) year of first collection, (b) population status and (c) potential pathway(s) of introduction. Data were analysed at global and regional levels to assess patterns of detection rate, richness and transport pathways. Results An annual mean of 43 (±16 SD) primary detections of ANS occurred—one new detection every 8.4 days for 50 years. The global rate of detections was relatively stable during 1965–1995, but increased rapidly after this time, peaking at roughly 66 primary detections per year during 2005–2010 and then declining marginally. Detection rates were variable within and across regions through time. Arthropods, molluscs and fishes were the most frequently reported ANS. Most ANS were likely introduced as stowaways in ships’ ballast water or biofouling, although direct evidence is typically absent. Main conclusions This synthesis highlights the magnitude of recent ANS detections, yet almost certainly represents an underestimate as many ANS go unreported due to limited search effort and diminishing taxonomic expertise. Temporal rates of detection are also confounded by reporting lags, likely contributing to the lower detection rate observed in recent years. There is a critical need to implement standardized, repeated methods across regions and taxa to improve the quality of global-scale comparisons and sustain core measures over longer time-scales. It will be fundamental to fill in knowledge gaps given that invasion data representing broad regions of the world's oceans are not yet readily available and to maintain knowledge pipelines for adaptive management.}, + abstract = {Abstract Aim The introduction of aquatic non-indigenous species (ANS) has become a major driver for global changes in species biogeography. We examined spatial patterns and temporal trends of ANS detections since 1965 to inform conservation policy and management. Location Global. Methods We assembled an extensive dataset of first records of detection of ANS (1965–2015) across 49 aquatic ecosystems, including the (a) year of first collection, (b) population status and (c) potential pathway(s) of introduction. Data were analysed at global and regional levels to assess patterns of detection rate, richness and transport pathways. Results An annual mean of 43 (±16 SD) primary detections of ANS occurred—one new detection every 8.4 days for 50 years. The global rate of detections was relatively stable during 1965–1995, but increased rapidly after this time, peaking at roughly 66 primary detections per year during 2005–2010 and then declining marginally. Detection rates were variable within and across regions through time. Arthropods, molluscs and fishes were the most frequently reported ANS. Most ANS were likely introduced as stowaways in ships’ ballast water or biofouling, although direct evidence is typically absent. Main conclusions This synthesis highlights the magnitude of recent ANS detections, yet almost certainly represents an underestimate as many ANS go unreported due to limited search effort and diminishing taxonomic expertise. Temporal rates of detection are also confounded by reporting lags, likely contributing to the lower detection rate observed in recent years. There is a critical need to implement standardized, repeated methods across regions and taxa to improve the quality of global-scale comparisons and sustain core measures over longer time-scales. It will be fundamental to fill in knowledge gaps given that invasion data representing broad regions of the world's oceans are not yet readily available and to maintain knowledge pipelines for adaptive management.}, ISSN = {1366-9516}, DOI = {https://doi.org/10.1111/ddi.13167}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/ddi.13167}, @@ -889,7 +933,7 @@ retrospective analysis}, volume = {21}, number = {7}, pages = {1459-1470}, - abstract = {Rivers transport large amounts of allochthonous organic matter (OM) to the ocean every year, but there are still fundamental gaps in how allochthonous OM is processed in the marine environment. Here, we estimated the relative contribution of allochthonous OM (allochthony) to the biomass of benthic and pelagic consumers in a shallow coastal ecosystem in the northern Baltic Sea. We used deuterium as a tracer of allochthony and assessed both temporal variation (monthly from May to August) and spatial variation (within and outside river plume). We found variability in allochthony in space and time and across species, with overall higher values for zoobenthos (26.2 ± 20.9%) than for zooplankton (0.8 ± 0.3%). Zooplankton allochthony was highest in May and very low during the other months, likely as a result of high inputs of allochthonous OM during the spring flood that fueled the pelagic food chain for a short period. In contrast, zoobenthos allochthony was only lower in June and remained high during the other months. Allochthony of zoobenthos was generally higher close to the river mouth than outside of the river plume, whereas it did not vary spatially for zooplankton. Last, zoobenthos allochthony was higher in deeper than in shallower areas, indicating that allochthonous OM might be more important when autochthonous resources are limited. Our results suggest that climate change predictions of increasing inputs of allochthonous OM to coastal ecosystems may affect basal energy sources supporting coastal food webs.}, + abstract = {Rivers transport large amounts of allochthonous organic matter (OM) to the ocean every year, but there are still fundamental gaps in how allochthonous OM is processed in the marine environment. Here, we estimated the relative contribution of allochthonous OM (allochthony) to the biomass of benthic and pelagic consumers in a shallow coastal ecosystem in the northern Baltic Sea. We used deuterium as a tracer of allochthony and assessed both temporal variation (monthly from May to August) and spatial variation (within and outside river plume). We found variability in allochthony in space and time and across species, with overall higher values for zoobenthos (26.2 ± 20.9%) than for zooplankton (0.8 ± 0.3%). Zooplankton allochthony was highest in May and very low during the other months, likely as a result of high inputs of allochthonous OM during the spring flood that fueled the pelagic food chain for a short period. In contrast, zoobenthos allochthony was only lower in June and remained high during the other months. Allochthony of zoobenthos was generally higher close to the river mouth than outside of the river plume, whereas it did not vary spatially for zooplankton. Last, zoobenthos allochthony was higher in deeper than in shallower areas, indicating that allochthonous OM might be more important when autochthonous resources are limited. Our results suggest that climate change predictions of increasing inputs of allochthonous OM to coastal ecosystems may affect basal energy sources supporting coastal food webs.}, ISSN = {1435-0629}, DOI = {https://doi.org/10.1007/s10021-018-0233-5}, url = {https://doi.org/10.1007/s10021-018-0233-5}, @@ -990,7 +1034,7 @@ retrospective analysis}, volume = {49}, number = {7}, pages = {2665-2683}, - abstract = {The objective of the present work is to compare the projections of surface solar radiation (SSR) simulated by four regional climate models (CCLM, RCA4, WRF, ALADIN) with the respective fields of their ten driving CMIP5 global climate models. First the annual and seasonal SSR changes are examined in the regional and in the global climate models based on the RCP8.5 emission scenarios. The results show significant discrepancies between the projected SSR, the multi-model mean of RCMs indicates a decrease in SSR of −0.60 W/m2 per decade over Europe, while the multi-model mean of the associated GCMs used to drive the RCMs gives an increase in SSR of +0.39 W/m2 per decade for the period of 2006–2100 over Europe. At seasonal scale the largest differences appear in spring and summer. The different signs of SSR projected changes can be interpreted as the consequence of the different behavior of cloud cover in global and regional climate models. Cloudiness shows a significant decline in GCMs with −0.24% per decade which explains the extra income in SSR, while in case of the regional models no significant changes in cloudiness can be detected. The reduction of SSR in RCMs can be attributed to increasing atmospheric absorption in line with the increase of water vapor content. Both global and regional models overestimate SSR in absolute terms as compared to surface observations, in line with an underestimation of cloud cover. Regional models further have difficulties to adequately reproduce the observed trends in SSR over the past decades.}, + abstract = {The objective of the present work is to compare the projections of surface solar radiation (SSR) simulated by four regional climate models (CCLM, RCA4, WRF, ALADIN) with the respective fields of their ten driving CMIP5 global climate models. First the annual and seasonal SSR changes are examined in the regional and in the global climate models based on the RCP8.5 emission scenarios. The results show significant discrepancies between the projected SSR, the multi-model mean of RCMs indicates a decrease in SSR of −0.60 W/m2 per decade over Europe, while the multi-model mean of the associated GCMs used to drive the RCMs gives an increase in SSR of +0.39 W/m2 per decade for the period of 2006–2100 over Europe. At seasonal scale the largest differences appear in spring and summer. The different signs of SSR projected changes can be interpreted as the consequence of the different behavior of cloud cover in global and regional climate models. Cloudiness shows a significant decline in GCMs with −0.24% per decade which explains the extra income in SSR, while in case of the regional models no significant changes in cloudiness can be detected. The reduction of SSR in RCMs can be attributed to increasing atmospheric absorption in line with the increase of water vapor content. Both global and regional models overestimate SSR in absolute terms as compared to surface observations, in line with an underestimation of cloud cover. Regional models further have difficulties to adequately reproduce the observed trends in SSR over the past decades.}, ISSN = {1432-0894}, DOI = {https://doi.org/10.1007/s00382-016-3471-2}, url = {https://doi.org/10.1007/s00382-016-3471-2}, @@ -1547,7 +1591,7 @@ Wave height}, volume = {778}, number = {1}, pages = {121-136}, - abstract = {Long-term and interannual changes in composition of submerged vegetation, diaspore reservoir and germination were investigated in the lagoon system Westrügensche Boddenkette, Baltic Sea, north-east Germany. Comparison with a survey from 1932, showed vegetation cover is similar to the past, maintaining high cover to depths of 2.8 m despite a period of eutrophication between about 1960 and 1990. Species dominance shifted, however, from small charophytes to larger species like Potamogeton pectinatus. We explain interannual vegetation changes by weather conditions. Such changes were observed in several species, most notably in Chara canescens. This annual species seems to be favoured by extensive winter ice cover. The diaspore reservoir and the germination success of submerged macrophytes do not mirror their frequency in the vegetation, but rather reflect life form strategies. Small oospores, mainly of annual charophytes, represented >97% of all diaspores but very few Chara oospores germinated. The numerous Tolypella oospores probably originated from a discrete period with high abundance during the 1950s and have completely failed to germinate. Angiosperm seeds are larger and less frequent but have higher germination success, especially Ruppia seeds. In conclusion, charophytes are outcompeted by larger angiosperms due to the combined effect of moderate eutrophication and climate change.}, + abstract = {Long-term and interannual changes in composition of submerged vegetation, diaspore reservoir and germination were investigated in the lagoon system Westrügensche Boddenkette, Baltic Sea, north-east Germany. Comparison with a survey from 1932, showed vegetation cover is similar to the past, maintaining high cover to depths of 2.8 m despite a period of eutrophication between about 1960 and 1990. Species dominance shifted, however, from small charophytes to larger species like Potamogeton pectinatus. We explain interannual vegetation changes by weather conditions. Such changes were observed in several species, most notably in Chara canescens. This annual species seems to be favoured by extensive winter ice cover. The diaspore reservoir and the germination success of submerged macrophytes do not mirror their frequency in the vegetation, but rather reflect life form strategies. Small oospores, mainly of annual charophytes, represented >97% of all diaspores but very few Chara oospores germinated. The numerous Tolypella oospores probably originated from a discrete period with high abundance during the 1950s and have completely failed to germinate. Angiosperm seeds are larger and less frequent but have higher germination success, especially Ruppia seeds. In conclusion, charophytes are outcompeted by larger angiosperms due to the combined effect of moderate eutrophication and climate change.}, ISSN = {1573-5117}, DOI = {https://doi.org/10.1007/s10750-016-2655-4}, url = {https://doi.org/10.1007/s10750-016-2655-4}, @@ -2027,7 +2071,7 @@ Baltic Sea}, volume = {45}, number = {18}, pages = {9880-9888}, - abstract = {Abstract The Atlantic Multidecadal Oscillation (AMO) is a natural mode of variability of the North Atlantic sea surface temperature. The AMO can be used to describe the complex interaction of the coupled atmosphere-ocean system of the North Atlantic. By analyzing a preindustrial period of 850 years with a regional climate model, we show that the AMO influences the Baltic Sea. AMO-related changes of the atmospheric circulation affect precipitation over the Baltic Sea region, which leads to altered river runoff influencing the salinity of the Baltic Sea. A wavelet coherence analysis reveals a persistent coherence between AMO and salinity for the whole period of 850 years. This suggests that the Baltic Sea is under the constant influence of the AMO. Our results provide strong evidence for long-term changes in the Baltic Sea as a result of changing AMO phases.}, + abstract = {Abstract The Atlantic Multidecadal Oscillation (AMO) is a natural mode of variability of the North Atlantic sea surface temperature. The AMO can be used to describe the complex interaction of the coupled atmosphere-ocean system of the North Atlantic. By analyzing a preindustrial period of 850 years with a regional climate model, we show that the AMO influences the Baltic Sea. AMO-related changes of the atmospheric circulation affect precipitation over the Baltic Sea region, which leads to altered river runoff influencing the salinity of the Baltic Sea. A wavelet coherence analysis reveals a persistent coherence between AMO and salinity for the whole period of 850 years. This suggests that the Baltic Sea is under the constant influence of the AMO. Our results provide strong evidence for long-term changes in the Baltic Sea as a result of changing AMO phases.}, DOI = {https://doi.org/10.1029/2018GL078943}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL078943}, year = {2018}, @@ -2096,7 +2140,7 @@ Nutrients}, volume = {29}, number = {S1}, pages = {101-118}, - abstract = {Abstract Identifying and understanding ecological drivers that influence wildlife populations is challenging but critical for conservation. This typically requires integrating long-term data on both the population and potential drivers within statistical models that are suitable for analysing these complex relationships. State-space models offer one method for integrating such data. Once implemented within a Bayesian framework, these analyses can control for multifactorial influences on populations, allowing one to extract otherwise undetectable correlations between the environment and the underlying, inferred demography. In the Moray Firth, Scotland, harbour seals have been counted annually for 30 years (1988–2018). A Bayesian state-space model was used to explore whether patterns in vital rates were correlated to changes in prey abundance, inter-specific competition (grey seal abundance), environmental variables [the North Atlantic Oscillation (NAO) and sea-surface temperature], or level of biotoxins (saxitoxin and domoic acid) in the Moray Firth waters. The credible interval of the posterior distributions of three of these covariate coefficients (sandeel proxy, NAO and grey seal abundance) suggested that there was a relationship between those covariates and vital rates. Both the sandeel proxy and NAO showed a positive correlation with fecundity, whereas grey seal abundance had a negative impact on pup survival. This work demonstrates how an integrated state-space modelling approach can bring together diverse data sets and point to important interactions with prey, and with other predators in the system. This suggests that the wider-scale management of UK harbour seal populations with their contrasting temporal trends needs to account for variation in the marine ecosystem at appropriate spatial scales, in line with current policy concerning spatial planning in the marine environment.}, + abstract = {Abstract Identifying and understanding ecological drivers that influence wildlife populations is challenging but critical for conservation. This typically requires integrating long-term data on both the population and potential drivers within statistical models that are suitable for analysing these complex relationships. State-space models offer one method for integrating such data. Once implemented within a Bayesian framework, these analyses can control for multifactorial influences on populations, allowing one to extract otherwise undetectable correlations between the environment and the underlying, inferred demography. In the Moray Firth, Scotland, harbour seals have been counted annually for 30 years (1988–2018). A Bayesian state-space model was used to explore whether patterns in vital rates were correlated to changes in prey abundance, inter-specific competition (grey seal abundance), environmental variables [the North Atlantic Oscillation (NAO) and sea-surface temperature], or level of biotoxins (saxitoxin and domoic acid) in the Moray Firth waters. The credible interval of the posterior distributions of three of these covariate coefficients (sandeel proxy, NAO and grey seal abundance) suggested that there was a relationship between those covariates and vital rates. Both the sandeel proxy and NAO showed a positive correlation with fecundity, whereas grey seal abundance had a negative impact on pup survival. This work demonstrates how an integrated state-space modelling approach can bring together diverse data sets and point to important interactions with prey, and with other predators in the system. This suggests that the wider-scale management of UK harbour seal populations with their contrasting temporal trends needs to account for variation in the marine ecosystem at appropriate spatial scales, in line with current policy concerning spatial planning in the marine environment.}, ISSN = {1052-7613}, DOI = {https://doi.org/10.1002/aqc.3130}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/aqc.3130}, @@ -2178,7 +2222,7 @@ Biodiversity conservation}, volume = {32}, number = {3}, pages = {497-513}, - abstract = {Abstract Coastal pH and total alkalinity are regulated by a diverse range of local processes superimposed on global trends of warming and ocean acidification, yet few studies have investigated the relative importance of different processes for coastal acidification. We describe long-term (1972–2016) and seasonal trends in the carbonate system of three Danish coastal systems demonstrating that hydrological modification, changes in nutrient inputs from land, and presence/absence of calcifiers can drastically alter carbonate chemistry. Total alkalinity was mainly governed by conservative mixing of freshwater (0.73–5.17 mmol kg−1) with outer boundary concentrations (~2–2.4 mmol kg−1), modulated seasonally and spatially (~0.1–0.2 mmol kg−1) by calcifiers. Nitrate assimilation by primary production, denitrification, and sulfate reduction increased total alkalinity by almost 0.6 mmol kg−1 in the most eutrophic system during a period without calcifiers. Trends in pH ranged from −0.0088 year−1 to 0.021 year−1, the more extreme of these mainly driven by salinity changes in a sluice-controlled lagoon. Temperature increased 0.05°C yr−1 across all three systems, which directly accounted for a pH decrease of 0.0008 year−1. Accounting for mixing, salinity, and temperature effects on dissociation and solubility constants, the resulting pH decline (0.0040 year−1) was about twice the ocean trend, emphasizing the effect of nutrient management on primary production and coastal acidification. Coastal pCO2 increased ~4 times more rapidly than ocean rates, enhancing CO2 emissions to the atmosphere. Indeed, coastal systems undergo more drastic changes than the ocean and coastal acidification trends are substantially enhanced from nutrient reductions to address coastal eutrophication.}, + abstract = {Abstract Coastal pH and total alkalinity are regulated by a diverse range of local processes superimposed on global trends of warming and ocean acidification, yet few studies have investigated the relative importance of different processes for coastal acidification. We describe long-term (1972–2016) and seasonal trends in the carbonate system of three Danish coastal systems demonstrating that hydrological modification, changes in nutrient inputs from land, and presence/absence of calcifiers can drastically alter carbonate chemistry. Total alkalinity was mainly governed by conservative mixing of freshwater (0.73–5.17 mmol kg−1) with outer boundary concentrations (~2–2.4 mmol kg−1), modulated seasonally and spatially (~0.1–0.2 mmol kg−1) by calcifiers. Nitrate assimilation by primary production, denitrification, and sulfate reduction increased total alkalinity by almost 0.6 mmol kg−1 in the most eutrophic system during a period without calcifiers. Trends in pH ranged from −0.0088 year−1 to 0.021 year−1, the more extreme of these mainly driven by salinity changes in a sluice-controlled lagoon. Temperature increased 0.05°C yr−1 across all three systems, which directly accounted for a pH decrease of 0.0008 year−1. Accounting for mixing, salinity, and temperature effects on dissociation and solubility constants, the resulting pH decline (0.0040 year−1) was about twice the ocean trend, emphasizing the effect of nutrient management on primary production and coastal acidification. Coastal pCO2 increased ~4 times more rapidly than ocean rates, enhancing CO2 emissions to the atmosphere. Indeed, coastal systems undergo more drastic changes than the ocean and coastal acidification trends are substantially enhanced from nutrient reductions to address coastal eutrophication.}, ISSN = {0886-6236}, DOI = {https://doi.org/10.1002/2017gb005781}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GB005781}, @@ -2361,7 +2405,7 @@ Biodiversity conservation}, volume = {41}, number = {11}, pages = {2889-2907}, - abstract = {European temperatures and their projected changes under the 8.5 W/m2 Representative Concentration Pathway scenario are evaluated in an ensemble of 33 global climate models participating in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Respective contributions of large-scale dynamics and local processes to both biases and changes in temperatures, and to the inter-model spread, are then investigated from a recently proposed methodology based on weather regimes. On average, CMIP5 models exhibit a cold bias in winter, especially in Northern Europe. They overestimate summer temperatures in Central Europe, in association with a greater diurnal range than observed. The projected temperature increase is stronger in summer than in winter, with the highest summer warming occurring over Mediterranean regions. Links between biases and sensitivities are evidenced in winter, suggesting a potential influence of snow cover biases on the projected surface warming. A brief analysis of daily temperature extremes suggests that the intra-seasonal variability is projected to decrease (slightly increase) in winter (summer). Then, in order to understand model discrepancies in both present-day and future climates, we disentangle effects of large-scale atmospheric dynamics and regional physical processes. In particular, in winter, CMIP5 models simulate a stronger North-Atlantic jet stream than observed and, in contrast with CMIP3 results, the majority of them suggests an increased frequency of the negative phase of the North-Atlantic Oscillation under future warming. While large-scale circulation only has a minor contribution to ensemble-mean biases or changes, which are primarily dominated by non-dynamical processes, it substantially affects the inter-model spread. Finally, other sources of uncertainties, including the North-Atlantic warming and local radiative feedbacks related to snow cover and clouds, are briefly discussed.}, + abstract = {European temperatures and their projected changes under the 8.5 W/m2 Representative Concentration Pathway scenario are evaluated in an ensemble of 33 global climate models participating in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Respective contributions of large-scale dynamics and local processes to both biases and changes in temperatures, and to the inter-model spread, are then investigated from a recently proposed methodology based on weather regimes. On average, CMIP5 models exhibit a cold bias in winter, especially in Northern Europe. They overestimate summer temperatures in Central Europe, in association with a greater diurnal range than observed. The projected temperature increase is stronger in summer than in winter, with the highest summer warming occurring over Mediterranean regions. Links between biases and sensitivities are evidenced in winter, suggesting a potential influence of snow cover biases on the projected surface warming. A brief analysis of daily temperature extremes suggests that the intra-seasonal variability is projected to decrease (slightly increase) in winter (summer). Then, in order to understand model discrepancies in both present-day and future climates, we disentangle effects of large-scale atmospheric dynamics and regional physical processes. In particular, in winter, CMIP5 models simulate a stronger North-Atlantic jet stream than observed and, in contrast with CMIP3 results, the majority of them suggests an increased frequency of the negative phase of the North-Atlantic Oscillation under future warming. While large-scale circulation only has a minor contribution to ensemble-mean biases or changes, which are primarily dominated by non-dynamical processes, it substantially affects the inter-model spread. Finally, other sources of uncertainties, including the North-Atlantic warming and local radiative feedbacks related to snow cover and clouds, are briefly discussed.}, ISSN = {1432-0894}, DOI = {https://doi.org/10.1007/s00382-013-1731-y}, url = {https://doi.org/10.1007/s00382-013-1731-y}, @@ -2456,7 +2500,7 @@ Biodiversity conservation}, volume = {47}, number = {5}, pages = {1435-1454}, - abstract = {In this study, a comprehensive comparison of Northern Hemisphere winter storm track trend since 1959 derived from multiple reanalysis datasets and rawinsonde observations has been conducted. In addition, trends in terms of variance and cyclone track statistics have been compared. Previous studies, based largely on the National Center for Environmental Prediction–National Center for Atmospheric Research Reanalysis (NNR), have suggested that both the Pacific and Atlantic storm tracks have significantly intensified between the 1950s and 1990s. Comparison with trends derived from rawinsonde observations suggest that the trends derived from NNR are significantly biased high, while those from the European Center for Medium Range Weather Forecasts 40-year Reanalysis and the Japanese 55-year Reanalysis are much less biased but still too high. Those from the two twentieth century reanalysis datasets are most consistent with observations but may exhibit slight biases of opposite signs. Between 1959 and 2010, Pacific storm track activity has likely increased by 10 % or more, while Atlantic storm track activity has likely increased by <10 %. Our analysis suggests that trends in Pacific and Atlantic basin wide storm track activity prior to the 1950s derived from the two twentieth century reanalysis datasets are unlikely to be reliable due to changes in density of surface observations. Nevertheless, these datasets may provide useful information on interannual variability, especially over the Atlantic.}, + abstract = {In this study, a comprehensive comparison of Northern Hemisphere winter storm track trend since 1959 derived from multiple reanalysis datasets and rawinsonde observations has been conducted. In addition, trends in terms of variance and cyclone track statistics have been compared. Previous studies, based largely on the National Center for Environmental Prediction–National Center for Atmospheric Research Reanalysis (NNR), have suggested that both the Pacific and Atlantic storm tracks have significantly intensified between the 1950s and 1990s. Comparison with trends derived from rawinsonde observations suggest that the trends derived from NNR are significantly biased high, while those from the European Center for Medium Range Weather Forecasts 40-year Reanalysis and the Japanese 55-year Reanalysis are much less biased but still too high. Those from the two twentieth century reanalysis datasets are most consistent with observations but may exhibit slight biases of opposite signs. Between 1959 and 2010, Pacific storm track activity has likely increased by 10 % or more, while Atlantic storm track activity has likely increased by <10 %. Our analysis suggests that trends in Pacific and Atlantic basin wide storm track activity prior to the 1950s derived from the two twentieth century reanalysis datasets are unlikely to be reliable due to changes in density of surface observations. Nevertheless, these datasets may provide useful information on interannual variability, especially over the Atlantic.}, ISSN = {1432-0894}, DOI = {https://doi.org/10.1007/s00382-015-2911-8}, url = {https://doi.org/10.1007/s00382-015-2911-8}, @@ -2470,7 +2514,7 @@ Biodiversity conservation}, journal = {Marine Pollution Bulletin}, volume = {152}, pages = {110875}, - abstract = {Hypoxia (O2 ≤ 2 mg L−1) can severely threaten the survival of marine life and alter the biogeochemical cycles of coastal ecosystems. Its impacts are dependent on its duration. In the present study, hypoxia was observed in autumn at the end of October 2011. It may be one of the latest recorded annual hypoxic events in the East China Sea (ECS). In the hypoxic regions, a large amount of nutrients and dissolved inorganic carbon were observed to regenerate. Also, acidification (low pH) was observed. On the other hand, hypoxic dissipation may be due to the destratification caused by the upwelling of the hypoxic regions in the ECS. These results suggest that hypoxia may occur for longer periods of time than expected and, accordingly, the effects of hypoxia on the ECS ecosystems should be reconsidered and further evaluated.}, + abstract = {Hypoxia (O2 ≤ 2 mg L−1) can severely threaten the survival of marine life and alter the biogeochemical cycles of coastal ecosystems. Its impacts are dependent on its duration. In the present study, hypoxia was observed in autumn at the end of October 2011. It may be one of the latest recorded annual hypoxic events in the East China Sea (ECS). In the hypoxic regions, a large amount of nutrients and dissolved inorganic carbon were observed to regenerate. Also, acidification (low pH) was observed. On the other hand, hypoxic dissipation may be due to the destratification caused by the upwelling of the hypoxic regions in the ECS. These results suggest that hypoxia may occur for longer periods of time than expected and, accordingly, the effects of hypoxia on the ECS ecosystems should be reconsidered and further evaluated.}, keywords = {Acidification Changjiang River estuary East China Sea @@ -2578,7 +2622,7 @@ Nutrient regeneration}, volume = {53}, number = {7}, pages = {4857-4869}, - abstract = {How climate change will unfold in the years to come is a central topic in today’s environmental debate, in particular at the regional level. While projections using large ensembles of global climate models consistently indicate a future decrease in summer precipitation over southern Europe and an increase over northern Europe, individual models substantially modulate these distinct signals of change in precipitation. So far model improvements and higher resolution from regional downscaling have not been seen as able to resolve these disagreements. In this paper we assess whether 2 decades of investments in large ensembles of downscaling experiments with regional climate model simulations for Europe have contributed to a more robust model assessment of the future climate at a range of geographical scales. We study climate change projections of European seasonal temperature and precipitation using an ensemble-suite comprised by all readily available pan-European regional model projections for the twenty-first-century, representing increasing model resolution from ~ 50 to ~ 12 km grid distance, as well as lateral boundary and sea surface temperature conditions from a variety of global model simulations. Employing a simple scaling with global mean temperature change we identify emerging robust signals of future seasonal temperature and precipitation changes also found to resemble current observed trends, where these are judged to be statistically significant.}, + abstract = {How climate change will unfold in the years to come is a central topic in today’s environmental debate, in particular at the regional level. While projections using large ensembles of global climate models consistently indicate a future decrease in summer precipitation over southern Europe and an increase over northern Europe, individual models substantially modulate these distinct signals of change in precipitation. So far model improvements and higher resolution from regional downscaling have not been seen as able to resolve these disagreements. In this paper we assess whether 2 decades of investments in large ensembles of downscaling experiments with regional climate model simulations for Europe have contributed to a more robust model assessment of the future climate at a range of geographical scales. We study climate change projections of European seasonal temperature and precipitation using an ensemble-suite comprised by all readily available pan-European regional model projections for the twenty-first-century, representing increasing model resolution from ~ 50 to ~ 12 km grid distance, as well as lateral boundary and sea surface temperature conditions from a variety of global model simulations. Employing a simple scaling with global mean temperature change we identify emerging robust signals of future seasonal temperature and precipitation changes also found to resemble current observed trends, where these are judged to be statistically significant.}, ISSN = {1432-0894}, DOI = {https://doi.org/10.1007/s00382-019-04831-z}, url = {https://doi.org/10.1007/s00382-019-04831-z}, @@ -2686,7 +2730,7 @@ Pomeranian Bight}, volume = {20}, number = {7}, pages = {2124-2139}, - abstract = {Abstract Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels.}, + abstract = {Abstract Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels.}, ISSN = {1354-1013}, DOI = {https://doi.org/10.1111/gcb.12562}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.12562}, @@ -2847,7 +2891,7 @@ Habitat loss}, volume = {34}, number = {3}, pages = {336-352}, - abstract = {Abstract Detailed temperature reconstructions over the past 2,000 years are important for contextualizing modern climate change. The midlatitude SE Pacific is a key region in this regard in terms of understanding the climatic linkages between the tropics and southern high latitudes. Multicentennial timescale temperature variability remains, however, poorly understood, due to a lack of long, high-temporal-resolution temperature records from this region and from the southern high latitudes in general. We present a unique alkenone sea surface temperature (SST) record from 44°S on the southern Chilean margin in the SE Pacific spanning the last 2,300 years at decadal resolution. The record displays relatively large changes including a cooling transition from 14 to 12.5 °C between 1,100 and 600 cal yr BP, in line with other Chile margin SST records and coeval with Antarctic cooling. This cooling is attributable to reduced Southern Ocean deep convection, driven by a late Holocene sea-ice increase in the Weddell Sea associated with increased El-Niño Southern Oscillation variability. Superimposed on the late Holocene cooling, we observe multicentennial timescale SST variability, including relatively cool SSTs (12.5 °C) from 950 to 500 cal yr BP, corresponding to the Medieval Climate Anomaly, and warmer SSTs (13 °C) from 500 to 200 cal yr BP, corresponding to the Little Ice Age. These oscillations may reflect either multicentennial internal variability of the Southern Ocean deep convection and/or multicentennial variability in the phasing of El-Niño Southern Oscillation and Southern Annular Mode events.}, + abstract = {Abstract Detailed temperature reconstructions over the past 2,000 years are important for contextualizing modern climate change. The midlatitude SE Pacific is a key region in this regard in terms of understanding the climatic linkages between the tropics and southern high latitudes. Multicentennial timescale temperature variability remains, however, poorly understood, due to a lack of long, high-temporal-resolution temperature records from this region and from the southern high latitudes in general. We present a unique alkenone sea surface temperature (SST) record from 44°S on the southern Chilean margin in the SE Pacific spanning the last 2,300 years at decadal resolution. The record displays relatively large changes including a cooling transition from 14 to 12.5 °C between 1,100 and 600 cal yr BP, in line with other Chile margin SST records and coeval with Antarctic cooling. This cooling is attributable to reduced Southern Ocean deep convection, driven by a late Holocene sea-ice increase in the Weddell Sea associated with increased El-Niño Southern Oscillation variability. Superimposed on the late Holocene cooling, we observe multicentennial timescale SST variability, including relatively cool SSTs (12.5 °C) from 950 to 500 cal yr BP, corresponding to the Medieval Climate Anomaly, and warmer SSTs (13 °C) from 500 to 200 cal yr BP, corresponding to the Little Ice Age. These oscillations may reflect either multicentennial internal variability of the Southern Ocean deep convection and/or multicentennial variability in the phasing of El-Niño Southern Oscillation and Southern Annular Mode events.}, ISSN = {2572-4517}, DOI = {https://doi.org/10.1029/2018pa003465}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018PA003465}, @@ -2989,7 +3033,7 @@ Habitat loss}, volume = {123}, number = {17}, pages = {9391-9409}, - abstract = {Abstract We describe the construction of a new version of the Europe-wide E-OBS temperature (daily minimum, mean, and maximum values) and precipitation data set. This version provides an improved estimation of interpolation uncertainty through the calculation of a 100-member ensemble of realizations of each daily field. The data set covers the period back to 1950 and provides gridded fields at a spacing of 0.25∘ × 0.25∘ in regular latitude/longitude coordinates. As with the original E-OBS data set, the ensemble version is based on the station series collated as part of the ECA&D initiative. Station density varies significantly over the domain, and over time, and a reliable estimation of interpolation uncertainty in the gridded fields is therefore important for users of the data set. The uncertainty quantified by the ensemble data set is more realistic than the uncertainty estimates in the original version, although uncertainty is still underestimated in data-sparse regions. The new data set is compared against the earlier version of E-OBS and against regional gridded data sets produced by a selection of National Meteorological Services. In terms of both climatological averages and extreme values, the new version of E-OBS is broadly comparable to the earlier version. Nonetheless, users will notice differences between the two E-OBS versions, especially for precipitation, which arises from the different gridding method used.}, + abstract = {Abstract We describe the construction of a new version of the Europe-wide E-OBS temperature (daily minimum, mean, and maximum values) and precipitation data set. This version provides an improved estimation of interpolation uncertainty through the calculation of a 100-member ensemble of realizations of each daily field. The data set covers the period back to 1950 and provides gridded fields at a spacing of 0.25∘ × 0.25∘ in regular latitude/longitude coordinates. As with the original E-OBS data set, the ensemble version is based on the station series collated as part of the ECA&D initiative. Station density varies significantly over the domain, and over time, and a reliable estimation of interpolation uncertainty in the gridded fields is therefore important for users of the data set. The uncertainty quantified by the ensemble data set is more realistic than the uncertainty estimates in the original version, although uncertainty is still underestimated in data-sparse regions. The new data set is compared against the earlier version of E-OBS and against regional gridded data sets produced by a selection of National Meteorological Services. In terms of both climatological averages and extreme values, the new version of E-OBS is broadly comparable to the earlier version. Nonetheless, users will notice differences between the two E-OBS versions, especially for precipitation, which arises from the different gridding method used.}, ISSN = {2169-897X}, DOI = {https://doi.org/10.1029/2017JD028200}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2017JD028200}, @@ -3271,7 +3315,7 @@ global change}, volume = {30}, number = {2}, pages = {e02032}, - abstract = {Abstract The hypoxic zone in the northern Gulf of Mexico is among the most dramatic examples of impairments to aquatic ecosystems. Despite having attracted substantial attention, management of this environmental crisis remains challenging, partially due to limited monitoring to support model development and long-term assessments. Here, we leverage new geostatistical estimates of hypoxia derived from nearly 150 monitoring cruises and a process-based model to improve characterization of controlling mechanisms, historic trends, and future responses of hypoxia while rigorously quantifying uncertainty in a Bayesian framework. We find that November–March nitrogen loads are important controls of sediment oxygen demand, which appears to be the major oxygen sink. In comparison, only ~23% of oxygen in the near-bottom region appears to be consumed by net water column respiration, which is driven by spring and summer loads. Hypoxia typically exceeds 15,600 km2 in June, peaks in July, and declines below 10,000 km2 in September. In contrast to some previous Gulf hindcasting studies, our simulations demonstrate that hypoxia was both severe and worsening prior to 1985, and has remained relatively stable since that time. Scenario analysis shows that halving nutrient loadings will reduce hypoxia by 37% with respect to 13,900 km2 (1985–2016 median), while a +2°C change in water temperature will cause a 26% hypoxic area increase due to enhanced sediment respiration and reduced oxygen solubility. These new results highlight the challenges of achieving hypoxia reduction targets, particularly under warming conditions, and should be considered in ecosystem management.}, + abstract = {Abstract The hypoxic zone in the northern Gulf of Mexico is among the most dramatic examples of impairments to aquatic ecosystems. Despite having attracted substantial attention, management of this environmental crisis remains challenging, partially due to limited monitoring to support model development and long-term assessments. Here, we leverage new geostatistical estimates of hypoxia derived from nearly 150 monitoring cruises and a process-based model to improve characterization of controlling mechanisms, historic trends, and future responses of hypoxia while rigorously quantifying uncertainty in a Bayesian framework. We find that November–March nitrogen loads are important controls of sediment oxygen demand, which appears to be the major oxygen sink. In comparison, only ~23% of oxygen in the near-bottom region appears to be consumed by net water column respiration, which is driven by spring and summer loads. Hypoxia typically exceeds 15,600 km2 in June, peaks in July, and declines below 10,000 km2 in September. In contrast to some previous Gulf hindcasting studies, our simulations demonstrate that hypoxia was both severe and worsening prior to 1985, and has remained relatively stable since that time. Scenario analysis shows that halving nutrient loadings will reduce hypoxia by 37% with respect to 13,900 km2 (1985–2016 median), while a +2°C change in water temperature will cause a 26% hypoxic area increase due to enhanced sediment respiration and reduced oxygen solubility. These new results highlight the challenges of achieving hypoxia reduction targets, particularly under warming conditions, and should be considered in ecosystem management.}, ISSN = {1051-0761}, DOI = {https://doi.org/10.1002/eap.2032}, url = {https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/eap.2032}, @@ -3389,7 +3433,7 @@ Modeling}, volume = {49}, number = {9}, pages = {3141-3157}, - abstract = {This study highlights the expected range of projected winter air temperature and precipitation trends over the next 30–50 years due to unpredictable fluctuations of the North Atlantic Oscillation (NAO) superimposed upon forced anthropogenic climate change. The findings are based on a 40-member initial-condition ensemble of simulations covering the period 1920–2100 conducted with the Community Earth System Model version 1 (CESM1) at 1° spatial resolution. The magnitude (and in some regions, even the sign) of the projected temperature and precipitation trends over Europe, Russia and parts of the Middle East vary considerably across the ensemble depending on the evolution of the NAO in each individual member. Thus, internal variability of the NAO imparts substantial uncertainty to future changes in regional climate over the coming decades. To validate the model results, we apply a simple scaling approach that relates the margin-of-error on a trend to the statistics of the interannual variability. In this way, we can obtain the expected range of projected climate trends using the interannual statistics of the observed NAO record in combination with the model’s radiatively-forced response (given by the ensemble-mean of the 40 simulations). The results of this observationally-based estimate are similar to those obtained directly from the CESM ensemble, attesting to the fidelity of the model’s representation of the NAO and the utility of this approach. Finally, we note that the interannual statistics of the NAO and associated surface climate impacts are subject to uncertainty due to sampling fluctuations, even when based on a century of data.}, + abstract = {This study highlights the expected range of projected winter air temperature and precipitation trends over the next 30–50 years due to unpredictable fluctuations of the North Atlantic Oscillation (NAO) superimposed upon forced anthropogenic climate change. The findings are based on a 40-member initial-condition ensemble of simulations covering the period 1920–2100 conducted with the Community Earth System Model version 1 (CESM1) at 1° spatial resolution. The magnitude (and in some regions, even the sign) of the projected temperature and precipitation trends over Europe, Russia and parts of the Middle East vary considerably across the ensemble depending on the evolution of the NAO in each individual member. Thus, internal variability of the NAO imparts substantial uncertainty to future changes in regional climate over the coming decades. To validate the model results, we apply a simple scaling approach that relates the margin-of-error on a trend to the statistics of the interannual variability. In this way, we can obtain the expected range of projected climate trends using the interannual statistics of the observed NAO record in combination with the model’s radiatively-forced response (given by the ensemble-mean of the 40 simulations). The results of this observationally-based estimate are similar to those obtained directly from the CESM ensemble, attesting to the fidelity of the model’s representation of the NAO and the utility of this approach. Finally, we note that the interannual statistics of the NAO and associated surface climate impacts are subject to uncertainty due to sampling fluctuations, even when based on a century of data.}, ISSN = {1432-0894}, DOI = {https://doi.org/10.1007/s00382-016-3502-z}, url = {https://doi.org/10.1007/s00382-016-3502-z}, @@ -3584,7 +3628,7 @@ Risk threshold}, volume = {23}, number = {5}, pages = {943-958}, - abstract = {This study applied the Systems Approach Framework (SAF) to address the issue of declining Atlantic cod fishery in coastal areas. Interviews of 58 fishers from 26 harbours and meetings with national fisheries organisations and managers revealed the perception of an offshore movement of coastal cod. Numerical modelling based on fishing survey data did not substantiate these perceptions in the data-poor coastal waters. However, Data Storage Tag (DST) information combined with bottom sea water temperature data from the spatio-temporal hydrodynamic Baltic Sea Ice-Ocean Model showed changes in potential cod habitat distribution in the Skagerrak-Kattegat and western Baltic from 1979 to 2016. Subsequently, cod habitats were defined in three categories: (i) potentially suitable (T ≤ 12 °C); (ii) episodic (12 < T ≤ 16 °C); and (iii) unsuitable (T > 16 °C). The environmental changes were linked to the socio-economic component of cod fishery. Cod catches (weight and monetary value) were retrieved using logbook information and data from the Vessel Monitoring System (VMS, 2005–2016) and the Automatic Identification System (AIS, 2006-2016). General additive modelling significantly showed the largest proportion of catches took place in the potentially suitable habitat whereas catches were lower in the episodic habitat and rare in the unsuitable habitat. The results of this first large-scale SAF application are highly valuable for adapting existing fisheries management by: (i) providing information on habitat shrinkage for Maximum Sustainable Yield (MSY) based stock assessments; (ii) adding a spatio-temporal dimension for coastal productivity relative to the vessel-based Individual Transferable Quota (ITQ) system; and (iii) providing a predictive scenario simulation tool for sustainable management under changing environmental conditions.}, + abstract = {This study applied the Systems Approach Framework (SAF) to address the issue of declining Atlantic cod fishery in coastal areas. Interviews of 58 fishers from 26 harbours and meetings with national fisheries organisations and managers revealed the perception of an offshore movement of coastal cod. Numerical modelling based on fishing survey data did not substantiate these perceptions in the data-poor coastal waters. However, Data Storage Tag (DST) information combined with bottom sea water temperature data from the spatio-temporal hydrodynamic Baltic Sea Ice-Ocean Model showed changes in potential cod habitat distribution in the Skagerrak-Kattegat and western Baltic from 1979 to 2016. Subsequently, cod habitats were defined in three categories: (i) potentially suitable (T ≤ 12 °C); (ii) episodic (12 < T ≤ 16 °C); and (iii) unsuitable (T > 16 °C). The environmental changes were linked to the socio-economic component of cod fishery. Cod catches (weight and monetary value) were retrieved using logbook information and data from the Vessel Monitoring System (VMS, 2005–2016) and the Automatic Identification System (AIS, 2006-2016). General additive modelling significantly showed the largest proportion of catches took place in the potentially suitable habitat whereas catches were lower in the episodic habitat and rare in the unsuitable habitat. The results of this first large-scale SAF application are highly valuable for adapting existing fisheries management by: (i) providing information on habitat shrinkage for Maximum Sustainable Yield (MSY) based stock assessments; (ii) adding a spatio-temporal dimension for coastal productivity relative to the vessel-based Individual Transferable Quota (ITQ) system; and (iii) providing a predictive scenario simulation tool for sustainable management under changing environmental conditions.}, ISSN = {1874-7841}, DOI = {https://doi.org/10.1007/s11852-019-00711-0}, url = {https://doi.org/10.1007/s11852-019-00711-0}, @@ -3687,7 +3731,7 @@ Risk threshold}, volume = {48}, number = {5}, pages = {1537-1554}, - abstract = {Analysis of observations indicates that there was a rapid increase in summer (June–August) mean surface air temperature (SAT) since the mid-1990s over Western Europe. Accompanying this rapid warming are significant increases in summer mean daily maximum temperature, daily minimum temperature, annual hottest day temperature and warmest night temperature, and an increase in frequency of summer days and tropical nights, while the change in the diurnal temperature range (DTR) is small. This study focuses on understanding causes of the rapid summer warming and associated temperature extreme changes. A set of experiments using the atmospheric component of the state-of-the-art HadGEM3 global climate model have been carried out to quantify relative roles of changes in sea surface temperature (SST)/sea ice extent (SIE), anthropogenic greenhouse gases (GHGs), and anthropogenic aerosols (AAer). Results indicate that the model forced by changes in all forcings reproduces many of the observed changes since the mid-1990s over Western Europe. Changes in SST/SIE explain 62.2 ± 13.0 % of the area averaged seasonal mean warming signal over Western Europe, with the remaining 37.8 ± 13.6 % of the warming explained by the direct impact of changes in GHGs and AAer. Results further indicate that the direct impact of the reduction of AAer precursor emissions over Europe, mainly through aerosol-radiation interaction with additional contributions from aerosol-cloud interaction and coupled atmosphere-land surface feedbacks, is a key factor for increases in annual hottest day temperature and in frequency of summer days. It explains 45.5 ± 17.6 % and 40.9 ± 18.4 % of area averaged signals for these temperature extremes. The direct impact of the reduction of AAer precursor emissions over Europe acts to increase DTR locally, but the change in DTR is countered by the direct impact of GHGs forcing. In the next few decades, greenhouse gas concentrations will continue to rise and AAer precursor emissions over Europe and North America will continue to decline. Our results suggest that the changes in summer seasonal mean SAT and temperature extremes over Western Europe since the mid-1990s are most likely to be sustained or amplified in the near term, unless other factors intervene.}, + abstract = {Analysis of observations indicates that there was a rapid increase in summer (June–August) mean surface air temperature (SAT) since the mid-1990s over Western Europe. Accompanying this rapid warming are significant increases in summer mean daily maximum temperature, daily minimum temperature, annual hottest day temperature and warmest night temperature, and an increase in frequency of summer days and tropical nights, while the change in the diurnal temperature range (DTR) is small. This study focuses on understanding causes of the rapid summer warming and associated temperature extreme changes. A set of experiments using the atmospheric component of the state-of-the-art HadGEM3 global climate model have been carried out to quantify relative roles of changes in sea surface temperature (SST)/sea ice extent (SIE), anthropogenic greenhouse gases (GHGs), and anthropogenic aerosols (AAer). Results indicate that the model forced by changes in all forcings reproduces many of the observed changes since the mid-1990s over Western Europe. Changes in SST/SIE explain 62.2 ± 13.0 % of the area averaged seasonal mean warming signal over Western Europe, with the remaining 37.8 ± 13.6 % of the warming explained by the direct impact of changes in GHGs and AAer. Results further indicate that the direct impact of the reduction of AAer precursor emissions over Europe, mainly through aerosol-radiation interaction with additional contributions from aerosol-cloud interaction and coupled atmosphere-land surface feedbacks, is a key factor for increases in annual hottest day temperature and in frequency of summer days. It explains 45.5 ± 17.6 % and 40.9 ± 18.4 % of area averaged signals for these temperature extremes. The direct impact of the reduction of AAer precursor emissions over Europe acts to increase DTR locally, but the change in DTR is countered by the direct impact of GHGs forcing. In the next few decades, greenhouse gas concentrations will continue to rise and AAer precursor emissions over Europe and North America will continue to decline. Our results suggest that the changes in summer seasonal mean SAT and temperature extremes over Western Europe since the mid-1990s are most likely to be sustained or amplified in the near term, unless other factors intervene.}, ISSN = {1432-0894}, DOI = {https://doi.org/10.1007/s00382-016-3158-8}, url = {https://doi.org/10.1007/s00382-016-3158-8}, @@ -3810,7 +3854,7 @@ Climate}, volume = {36}, number = {2}, pages = {221-236}, - abstract = {Ocean acidification due to anthropogenic CO2 emissions is a dominant driver of long-term changes in pH in the open ocean, raising concern for the future of calcifying organisms, many of which are present in coastal habitats. However, changes in pH in coastal ecosystems result from a multitude of drivers, including impacts from watershed processes, nutrient inputs, and changes in ecosystem structure and metabolism. Interaction between ocean acidification due to anthropogenic CO2 emissions and the dynamic regional to local drivers of coastal ecosystems have resulted in complex regulation of pH in coastal waters. Changes in the watershed can, for example, lead to changes in alkalinity and CO2 fluxes that, together with metabolic processes and oceanic dynamics, yield high-magnitude decadal changes of up to 0.5 units in coastal pH. Metabolism results in strong diel to seasonal fluctuations in pH, with characteristic ranges of 0.3 pH units, with metabolically intense habitats exceeding this range on a daily basis. The intense variability and multiple, complex controls on pH implies that the concept of ocean acidification due to anthropogenic CO2 emissions cannot be transposed to coastal ecosystems directly. Furthermore, in coastal ecosystems, the detection of trends towards acidification is not trivial and the attribution of these changes to anthropogenic CO2 emissions is even more problematic. Coastal ecosystems may show acidification or basification, depending on the balance between the invasion of coastal waters by anthropogenic CO2, watershed export of alkalinity, organic matter and CO2, and changes in the balance between primary production, respiration and calcification rates in response to changes in nutrient inputs and losses of ecosystem components. Hence, we contend that ocean acidification from anthropogenic CO2 is largely an open-ocean syndrome and that a concept of anthropogenic impacts on marine pH, which is applicable across the entire ocean, from coastal to open-ocean environments, provides a superior framework to consider the multiple components of the anthropogenic perturbation of marine pH trajectories. The concept of anthropogenic impacts on seawater pH acknowledges that a regional focus is necessary to predict future trajectories in the pH of coastal waters and points at opportunities to manage these trajectories locally to conserve coastal organisms vulnerable to ocean acidification.}, + abstract = {Ocean acidification due to anthropogenic CO2 emissions is a dominant driver of long-term changes in pH in the open ocean, raising concern for the future of calcifying organisms, many of which are present in coastal habitats. However, changes in pH in coastal ecosystems result from a multitude of drivers, including impacts from watershed processes, nutrient inputs, and changes in ecosystem structure and metabolism. Interaction between ocean acidification due to anthropogenic CO2 emissions and the dynamic regional to local drivers of coastal ecosystems have resulted in complex regulation of pH in coastal waters. Changes in the watershed can, for example, lead to changes in alkalinity and CO2 fluxes that, together with metabolic processes and oceanic dynamics, yield high-magnitude decadal changes of up to 0.5 units in coastal pH. Metabolism results in strong diel to seasonal fluctuations in pH, with characteristic ranges of 0.3 pH units, with metabolically intense habitats exceeding this range on a daily basis. The intense variability and multiple, complex controls on pH implies that the concept of ocean acidification due to anthropogenic CO2 emissions cannot be transposed to coastal ecosystems directly. Furthermore, in coastal ecosystems, the detection of trends towards acidification is not trivial and the attribution of these changes to anthropogenic CO2 emissions is even more problematic. Coastal ecosystems may show acidification or basification, depending on the balance between the invasion of coastal waters by anthropogenic CO2, watershed export of alkalinity, organic matter and CO2, and changes in the balance between primary production, respiration and calcification rates in response to changes in nutrient inputs and losses of ecosystem components. Hence, we contend that ocean acidification from anthropogenic CO2 is largely an open-ocean syndrome and that a concept of anthropogenic impacts on marine pH, which is applicable across the entire ocean, from coastal to open-ocean environments, provides a superior framework to consider the multiple components of the anthropogenic perturbation of marine pH trajectories. The concept of anthropogenic impacts on seawater pH acknowledges that a regional focus is necessary to predict future trajectories in the pH of coastal waters and points at opportunities to manage these trajectories locally to conserve coastal organisms vulnerable to ocean acidification.}, ISSN = {1559-2731}, DOI = {https://doi.org/10.1007/s12237-013-9594-3}, url = {https://doi.org/10.1007/s12237-013-9594-3}, @@ -4070,7 +4114,7 @@ Wave set-up}, volume = {45}, number = {6}, pages = {649-660}, - abstract = {Reducing anthropogenic nutrient inputs is a major policy goal for restoring good environmental status of coastal marine ecosystems. However, it is unclear to what extent reducing nutrients would also lower fish production and fisheries yields. Empirical examples of changes in nutrient loads and concurrent fish production can provide useful insights to this question. In this paper, we investigate to what extent a multi-fold increase in nutrient loads from the 1950s to 1980s enhanced forage fish production in the Baltic Sea. We use monitoring data on fish stock dynamics covering the period of the nutrient increase, combined with nutrient concentrations from a 3-dimensional coupled physical-biogeochemical ocean model. The results suggest that nutrient enrichment enhanced the biomass level of forage fish by up to 50 % in some years and areas due to increased body weight of fish. However, the trends in fish biomasses were generally decoupled from changes in nutrient concentrations.}, + abstract = {Reducing anthropogenic nutrient inputs is a major policy goal for restoring good environmental status of coastal marine ecosystems. However, it is unclear to what extent reducing nutrients would also lower fish production and fisheries yields. Empirical examples of changes in nutrient loads and concurrent fish production can provide useful insights to this question. In this paper, we investigate to what extent a multi-fold increase in nutrient loads from the 1950s to 1980s enhanced forage fish production in the Baltic Sea. We use monitoring data on fish stock dynamics covering the period of the nutrient increase, combined with nutrient concentrations from a 3-dimensional coupled physical-biogeochemical ocean model. The results suggest that nutrient enrichment enhanced the biomass level of forage fish by up to 50 % in some years and areas due to increased body weight of fish. However, the trends in fish biomasses were generally decoupled from changes in nutrient concentrations.}, ISSN = {1654-7209}, DOI = {https://doi.org/10.1007/s13280-016-0788-3}, url = {https://doi.org/10.1007/s13280-016-0788-3}, @@ -4341,7 +4385,7 @@ Zostera marina}, publisher = {Springer International Publishing}, address = {Cham}, pages = {131-144}, - abstract = {This chapter describes recent change in the circulation and stratification of the Baltic Sea. A recent warming trend in sea-surface waters has been clearly demonstrated by in situ measurements, remote sensing data and numerical models. Trends in sea-surface temperatureSea-surface temperature(SST) for the past three to four decades based on remote sensingRemote sensingdata generally agree with trends determined from in situ observations. Models suggest the current warming within the Baltic Sea lies within the range experienced during the past 500 years. The salinity and stratification of the deep waters are strongly linked to the major inflows of North Sea water that occur sporadically and bring high-saline water into the deep layers of the Baltic Sea. The major inflows normally occur during winter and spring and bring cold oxygen-rich waters into the deep basins. Since 1996, large inflows have also occurred during summer, bringing in warm low-oxygen water.}, + abstract = {This chapter describes recent change in the circulation and stratification of the Baltic Sea. A recent warming trend in sea-surface waters has been clearly demonstrated by in situ measurements, remote sensing data and numerical models. Trends in sea-surface temperatureSea-surface temperature(SST) for the past three to four decades based on remote sensingRemote sensingdata generally agree with trends determined from in situ observations. Models suggest the current warming within the Baltic Sea lies within the range experienced during the past 500 years. The salinity and stratification of the deep waters are strongly linked to the major inflows of North Sea water that occur sporadically and bring high-saline water into the deep layers of the Baltic Sea. The major inflows normally occur during winter and spring and bring cold oxygen-rich waters into the deep basins. Since 1996, large inflows have also occurred during summer, bringing in warm low-oxygen water.}, ISBN = {978-3-319-16006-1}, DOI = {https://doi.org/10.1007/978-3-319-16006-1_7}, url = {https://doi.org/10.1007/978-3-319-16006-1_7}, @@ -4911,7 +4955,7 @@ Lake Huron}, volume = {25}, number = {17}, pages = {4097-4112}, - abstract = {Abstract Identifying the processes that drive changes in the abundance and distribution of natural populations is a central theme in ecology and evolution. Many species of marine mammals have experienced dramatic changes in abundance and distribution due to climatic fluctuations and anthropogenic impacts. However, thanks to conservation efforts, some of these species have shown remarkable population recovery and are now recolonizing their former ranges. Here, we use zooarchaeological, demographic and genetic data to examine processes of colonization, local extinction and recolonization of the two northern European grey seal subspecies inhabiting the Baltic Sea and North Sea. The zooarchaeological and genetic data suggest that the two subspecies diverged shortly after the formation of the Baltic Sea approximately 4200 years bp, probably through a gradual shift to different breeding habitats and phenologies. By comparing genetic data from 19th century pre-extinction material with that from seals currently recolonizing their past range, we observed a marked spatiotemporal shift in subspecies boundaries, with increasing encroachment of North Sea seals on areas previously occupied by the Baltic Sea subspecies. Further, both demographic and genetic data indicate that the two subspecies have begun to overlap geographically and are hybridizing in a narrow contact zone. Our findings provide new insights into the processes of colonization, extinction and recolonization and have important implications for the management of grey seals across northern Europe.}, + abstract = {Abstract Identifying the processes that drive changes in the abundance and distribution of natural populations is a central theme in ecology and evolution. Many species of marine mammals have experienced dramatic changes in abundance and distribution due to climatic fluctuations and anthropogenic impacts. However, thanks to conservation efforts, some of these species have shown remarkable population recovery and are now recolonizing their former ranges. Here, we use zooarchaeological, demographic and genetic data to examine processes of colonization, local extinction and recolonization of the two northern European grey seal subspecies inhabiting the Baltic Sea and North Sea. The zooarchaeological and genetic data suggest that the two subspecies diverged shortly after the formation of the Baltic Sea approximately 4200 years bp, probably through a gradual shift to different breeding habitats and phenologies. By comparing genetic data from 19th century pre-extinction material with that from seals currently recolonizing their past range, we observed a marked spatiotemporal shift in subspecies boundaries, with increasing encroachment of North Sea seals on areas previously occupied by the Baltic Sea subspecies. Further, both demographic and genetic data indicate that the two subspecies have begun to overlap geographically and are hybridizing in a narrow contact zone. Our findings provide new insights into the processes of colonization, extinction and recolonization and have important implications for the management of grey seals across northern Europe.}, ISSN = {0962-1083}, DOI = {https://doi.org/10.1111/mec.13748}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/mec.13748}, @@ -5015,7 +5059,7 @@ sali transport}, volume = {25}, number = {5}, pages = {461-476}, - abstract = {The output of several multi-century simulations with a coupled ocean–atmosphere general circulation model is examined with respect to the variability of global storm activity in winter on time scales of decades and longer. The frequency of maximum wind speed events within a grid box, using the lower limits on the Beaufort wind speed scale of 8 and 10 Bft as thresholds, is taken as the characteristic parameter. Two historical climate runs with time-dependent forcing of the last five centuries, one control simulation, and three climate change experiments are considered. The storm frequency shows no trend until recently. Global maps for the industrially influenced period hardly differ from pre-industrial maps, even though significant temperature anomalies temporarily emerge in the historical runs. Two indicators describing the frequency and the regional shift of storm activity are determined. In historical times they are decoupled from temperature. Variations in solar and volcanic forcing in the historical simulations as well as in greenhouse gas concentrations for the industrially influenced period are not related to variations in storm activity. Also, anomalous temperature regimes like the Late Maunder Minimum are not associated with systematic storm conditions. In the climate change experiments, a poleward shift of storm activity is found in all three storm track regions. Over the North Atlantic and Southern Ocean, storm activity increases, while it decreases over the Pacific Ocean. In contrast to the historical runs, and with the exception of the North Pacific storm frequency index, the storm indices parallel the development of temperature, exceeding the 2 σ-range of pre-industrial variations in the early twenty-first century.}, + abstract = {The output of several multi-century simulations with a coupled ocean–atmosphere general circulation model is examined with respect to the variability of global storm activity in winter on time scales of decades and longer. The frequency of maximum wind speed events within a grid box, using the lower limits on the Beaufort wind speed scale of 8 and 10 Bft as thresholds, is taken as the characteristic parameter. Two historical climate runs with time-dependent forcing of the last five centuries, one control simulation, and three climate change experiments are considered. The storm frequency shows no trend until recently. Global maps for the industrially influenced period hardly differ from pre-industrial maps, even though significant temperature anomalies temporarily emerge in the historical runs. Two indicators describing the frequency and the regional shift of storm activity are determined. In historical times they are decoupled from temperature. Variations in solar and volcanic forcing in the historical simulations as well as in greenhouse gas concentrations for the industrially influenced period are not related to variations in storm activity. Also, anomalous temperature regimes like the Late Maunder Minimum are not associated with systematic storm conditions. In the climate change experiments, a poleward shift of storm activity is found in all three storm track regions. Over the North Atlantic and Southern Ocean, storm activity increases, while it decreases over the Pacific Ocean. In contrast to the historical runs, and with the exception of the North Pacific storm frequency index, the storm indices parallel the development of temperature, exceeding the 2 σ-range of pre-industrial variations in the early twenty-first century.}, ISSN = {1432-0894}, DOI = {https://doi.org/10.1007/s00382-005-0036-1}, url = {https://doi.org/10.1007/s00382-005-0036-1}, @@ -5184,7 +5228,7 @@ eutrophication}, journal = {Geophysical Research Letters}, volume = {39}, number = {6}, - abstract = {Arctic amplification (AA) – the observed enhanced warming in high northern latitudes relative to the northern hemisphere – is evident in lower-tropospheric temperatures and in 1000-to-500 hPa thicknesses. Daily fields of 500 hPa heights from the National Centers for Environmental Prediction Reanalysis are analyzed over N. America and the N. Atlantic to assess changes in north-south (Rossby) wave characteristics associated with AA and the relaxation of poleward thickness gradients. Two effects are identified that each contribute to a slower eastward progression of Rossby waves in the upper-level flow: 1) weakened zonal winds, and 2) increased wave amplitude. These effects are particularly evident in autumn and winter consistent with sea-ice loss, but are also apparent in summer, possibly related to earlier snow melt on high-latitude land. Slower progression of upper-level waves would cause associated weather patterns in mid-latitudes to be more persistent, which may lead to an increased probability of extreme weather events that result from prolonged conditions, such as drought, flooding, cold spells, and heat waves.}, + abstract = {Arctic amplification (AA) – the observed enhanced warming in high northern latitudes relative to the northern hemisphere – is evident in lower-tropospheric temperatures and in 1000-to-500 hPa thicknesses. Daily fields of 500 hPa heights from the National Centers for Environmental Prediction Reanalysis are analyzed over N. America and the N. Atlantic to assess changes in north-south (Rossby) wave characteristics associated with AA and the relaxation of poleward thickness gradients. Two effects are identified that each contribute to a slower eastward progression of Rossby waves in the upper-level flow: 1) weakened zonal winds, and 2) increased wave amplitude. These effects are particularly evident in autumn and winter consistent with sea-ice loss, but are also apparent in summer, possibly related to earlier snow melt on high-latitude land. Slower progression of upper-level waves would cause associated weather patterns in mid-latitudes to be more persistent, which may lead to an increased probability of extreme weather events that result from prolonged conditions, such as drought, flooding, cold spells, and heat waves.}, ISSN = {0094-8276}, DOI = {https://doi.org/10.1029/2012GL051000}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012GL051000}, @@ -5333,7 +5377,7 @@ eutrophication}, volume = {160}, number = {8}, pages = {1825-1834}, - abstract = {The accumulation of carbon dioxide in the atmosphere will lower the pH in ocean waters, a process termed ocean acidification (OA). Despite its potentially detrimental effects on calcifying organisms, experimental studies on the possible impacts on fish remain scarce. While adults will most likely remain relatively unaffected by changes in seawater pH, early life-history stages are potentially more sensitive, due to the lack of gills with specialized ion-regulatory mechanisms. We tested the effects of OA on growth and development of embryos and larvae of eastern Baltic cod, the commercially most important fish stock in the Baltic Sea. Cod were reared from newly fertilized eggs to early non-feeding larvae in 5 different experiments looking at a range of response variables to OA, as well as the combined effect of CO2 and temperature. No effect on hatching, survival, development, and otolith size was found at any stage in the development of Baltic cod. Field data show that in the Bornholm Basin, the main spawning site of eastern Baltic cod, in situ levels of pCO2 are already at levels of 1,100 μatm with a pH of 7.2, mainly due to high eutrophication supporting microbial activity and permanent stratification with little water exchange. Our data show that the eggs and early larval stages of Baltic cod seem to be robust to even high levels of OA (3,200 μatm), indicating an adaptational response to CO2.}, + abstract = {The accumulation of carbon dioxide in the atmosphere will lower the pH in ocean waters, a process termed ocean acidification (OA). Despite its potentially detrimental effects on calcifying organisms, experimental studies on the possible impacts on fish remain scarce. While adults will most likely remain relatively unaffected by changes in seawater pH, early life-history stages are potentially more sensitive, due to the lack of gills with specialized ion-regulatory mechanisms. We tested the effects of OA on growth and development of embryos and larvae of eastern Baltic cod, the commercially most important fish stock in the Baltic Sea. Cod were reared from newly fertilized eggs to early non-feeding larvae in 5 different experiments looking at a range of response variables to OA, as well as the combined effect of CO2 and temperature. No effect on hatching, survival, development, and otolith size was found at any stage in the development of Baltic cod. Field data show that in the Bornholm Basin, the main spawning site of eastern Baltic cod, in situ levels of pCO2 are already at levels of 1,100 μatm with a pH of 7.2, mainly due to high eutrophication supporting microbial activity and permanent stratification with little water exchange. Our data show that the eggs and early larval stages of Baltic cod seem to be robust to even high levels of OA (3,200 μatm), indicating an adaptational response to CO2.}, ISSN = {1432-1793}, DOI = {https://doi.org/10.1007/s00227-011-1876-3}, url = {https://doi.org/10.1007/s00227-011-1876-3}, @@ -5348,7 +5392,7 @@ eutrophication}, volume = {81}, number = {1}, pages = {357-371}, - abstract = {An analysis is presented of the estimated impacts of climate change on resource potential in Europe under a wide range of model-based climate scenarios. Simple models and indices were used to assess impacts on the growing season, potential biomass, thermal suitability for the cultivation of crops, and potential energy demand for indoor cooling. Impacts were estimated for climate during the 1961–1990 baseline period (both observed and modelled) and projected during 2071–2100 based on outputs from a range of regional climate models (RCMs) driven by general circulation models (GCMs) assuming forcing by SRES emission scenarios A2 and B2, and from six atmosphere–ocean GCMs forced by a wider range of emission scenarios. Uncertainties in the projected impacts of climate change are assessed with respect to: (1) the direct climate model output vs. delta change approach, (2) differences in the driving GCMs and the RCM runs, (3) differences across a range of emission scenarios, (4) changes in long-term mean climate, and (5) changes in inter-annual climate variability. Future simulations show substantial changes in all analysed impact sectors, but with a relatively large spread of results attributable to uncertainties in future climate expressed by the different scenarios. Results included shifts of the northern limits of areas thermally suitable for the cultivation of soya bean and grain maize by several hundred kilometres, lengthening of the thermal growing season by 3–12 weeks, strong increases of potential biomass in northern Europe and slight decreases in southern Europe, and increased energy demand for cooling throughout Europe. Our results hint at systematic differences between RCM and GCM projections of temperature, though not precipitation, over Europe. The results also highlight the importance of accounting for inter-annual variability in estimating future impacts, through its affect on levels of risk. However, the results caution against the use of direct RCM outputs in impact models, due to biases in the representation of present-day climate. The delta change approach still appears to be the preferred option for most applications.}, + abstract = {An analysis is presented of the estimated impacts of climate change on resource potential in Europe under a wide range of model-based climate scenarios. Simple models and indices were used to assess impacts on the growing season, potential biomass, thermal suitability for the cultivation of crops, and potential energy demand for indoor cooling. Impacts were estimated for climate during the 1961–1990 baseline period (both observed and modelled) and projected during 2071–2100 based on outputs from a range of regional climate models (RCMs) driven by general circulation models (GCMs) assuming forcing by SRES emission scenarios A2 and B2, and from six atmosphere–ocean GCMs forced by a wider range of emission scenarios. Uncertainties in the projected impacts of climate change are assessed with respect to: (1) the direct climate model output vs. delta change approach, (2) differences in the driving GCMs and the RCM runs, (3) differences across a range of emission scenarios, (4) changes in long-term mean climate, and (5) changes in inter-annual climate variability. Future simulations show substantial changes in all analysed impact sectors, but with a relatively large spread of results attributable to uncertainties in future climate expressed by the different scenarios. Results included shifts of the northern limits of areas thermally suitable for the cultivation of soya bean and grain maize by several hundred kilometres, lengthening of the thermal growing season by 3–12 weeks, strong increases of potential biomass in northern Europe and slight decreases in southern Europe, and increased energy demand for cooling throughout Europe. Our results hint at systematic differences between RCM and GCM projections of temperature, though not precipitation, over Europe. The results also highlight the importance of accounting for inter-annual variability in estimating future impacts, through its affect on levels of risk. However, the results caution against the use of direct RCM outputs in impact models, due to biases in the representation of present-day climate. The delta change approach still appears to be the preferred option for most applications.}, ISSN = {1573-1480}, DOI = {https://doi.org/10.1007/s10584-006-9214-3}, url = {https://doi.org/10.1007/s10584-006-9214-3}, @@ -5443,7 +5487,7 @@ https://tc.copernicus.org/articles/9/427/2015/tc-9-427-2015.pdf}, publisher = {Springer International Publishing}, address = {Cham}, pages = {453-477}, - abstract = {Anthropogenic land-cover change (ALCC) is one of the few climate forcings for which the net direction of the climate response over the last two centuries is still not known. The uncertainty is due to the often counteracting temperature responses to the many biogeophysical effects and to the biogeochemical versus biogeophysical effects. Palaeoecological studies show that the major transformation of the landscape by anthropogenic activities in the southern zone of the Baltic Sea basin occurred between 6000 and 3000/2500 cal year BP. The only modelling study of the biogeophysical effects of past ALCCs on regional climate in north-western Europe suggests that deforestation between 6000 and 200 cal year BP may have caused significant change in winter and summer temperature. There is no indication that deforestation in the Baltic Sea area since AD 1850 would have been a major cause of the recent climate warming in the region through a positive biogeochemical feedback. Several model studies suggest that boreal reforestationReforestationmight not be an effective climate warming mitigation tool as it might lead to increased warming through biogeophysical processes.}, + abstract = {Anthropogenic land-cover change (ALCC) is one of the few climate forcings for which the net direction of the climate response over the last two centuries is still not known. The uncertainty is due to the often counteracting temperature responses to the many biogeophysical effects and to the biogeochemical versus biogeophysical effects. Palaeoecological studies show that the major transformation of the landscape by anthropogenic activities in the southern zone of the Baltic Sea basin occurred between 6000 and 3000/2500 cal year BP. The only modelling study of the biogeophysical effects of past ALCCs on regional climate in north-western Europe suggests that deforestation between 6000 and 200 cal year BP may have caused significant change in winter and summer temperature. There is no indication that deforestation in the Baltic Sea area since AD 1850 would have been a major cause of the recent climate warming in the region through a positive biogeochemical feedback. Several model studies suggest that boreal reforestationReforestationmight not be an effective climate warming mitigation tool as it might lead to increased warming through biogeophysical processes.}, ISBN = {978-3-319-16006-1}, DOI = {https://doi.org/10.1007/978-3-319-16006-1_25}, url = {https://doi.org/10.1007/978-3-319-16006-1_25}, @@ -5497,7 +5541,7 @@ morphological adaptation}, volume = {177}, number = {3}, pages = {849-860}, - abstract = {Concern about climate change has re-ignited interest in universal ecological responses to temperature variations: (1) biogeographical shifts, (2) phenology changes, and (3) size shifts. In this study we used copepods as model organisms to study size responses to temperature because of their central role in the pelagic food web and because of the ontogenetic length constancy between molts, which facilitates the definition of size of distinct developmental stages. In order to test the expected temperature-induced shifts towards smaller body size and lower abundances under warming conditions, a mesocosm experiment using plankton from the Baltic Sea at three temperature levels (ambient, ambient +4 °C, ambient −4 °C) was performed in summer 2010. Overall copepod and copepodit abundances, copepod size at all life stages, and adult copepod size in particular, showed significant temperature effects. As expected, zooplankton peak abundance was lower in warm than in ambient treatments. Copepod size-at-immature stage significantly increased in cold treatments, while adult size significantly decreased in warm treatments.}, + abstract = {Concern about climate change has re-ignited interest in universal ecological responses to temperature variations: (1) biogeographical shifts, (2) phenology changes, and (3) size shifts. In this study we used copepods as model organisms to study size responses to temperature because of their central role in the pelagic food web and because of the ontogenetic length constancy between molts, which facilitates the definition of size of distinct developmental stages. In order to test the expected temperature-induced shifts towards smaller body size and lower abundances under warming conditions, a mesocosm experiment using plankton from the Baltic Sea at three temperature levels (ambient, ambient +4 °C, ambient −4 °C) was performed in summer 2010. Overall copepod and copepodit abundances, copepod size at all life stages, and adult copepod size in particular, showed significant temperature effects. As expected, zooplankton peak abundance was lower in warm than in ambient treatments. Copepod size-at-immature stage significantly increased in cold treatments, while adult size significantly decreased in warm treatments.}, ISSN = {1432-1939}, DOI = {https://doi.org/10.1007/s00442-014-3130-4}, url = {https://doi.org/10.1007/s00442-014-3130-4}, @@ -5555,7 +5599,7 @@ morphological adaptation}, journal = {Atmospheric Environment}, volume = {253}, pages = {118377}, - abstract = {Despite significant reductions in nitrogen emissions achieved in Europe during the last three decades, eutrophication remains an environmental concern in the Baltic Sea basin. Recently, a number of comprehensive modelling studies have been conducted for the HELCOM Commission to inform the 2021 update of the Baltic Sea Action Plan. The calculations have focused on trends in airborne nitrogen deposition to the Baltic Sea and its nine sub-basins during the 2000–2017 period, the identification and ranking of the main contributors to deposition, as well as future projections for 2030, assuming compliance with the Gothenburg Protocol and the EU NEC Directive. This paper synthesizes the main results from these studies and puts them into the context of maximum allowable nutrient inputs to the Baltic Sea. According to our results, the airborne annual deposition to the Baltic Sea in 2017 amounted to 122.6 Gg(N) of oxidized nitrogen and 105.3 Gg(N) of reduced nitrogen, corresponding to a decrease since 2000 by, respectively, 39% and 11%. In order to filter out the large inter-annual variability due to meteorology and to better reflect trends in emissions, weather-normalized depositions of nitrogen have been calculated as well, according to which the decreases since 2000 amount to 35%, 7% and 25% for oxidized, reduced and total nitrogen, respectively. In 2017, Germany, Poland and Denmark were the most important contributors to airborne deposition of total (oxidized + reduced) nitrogen to the Baltic Sea. Agriculture contributed most to reduced nitrogen deposition, while the transport sector contributed most to oxidized nitrogen deposition. Agriculture in Germany was the single-most important contributor to nitrogen deposition to the Baltic Sea in 2017 (accounting for about 15% of the total), but there are numerous other important sectoral contributions. Emissions of nitrogen from the nine HELCOM Contracting Parties contributed 49%, 76% and 61% to oxidized, reduced and total nitrogen deposition, respectively. Assuming full compliance with the EU NEC Directive and the Gothenburg Protocol, significant further reductions in nitrogen deposition can be achieved by 2030, down to an annual deposition of 72.7 Gg(N) and 84.7 Gg(N) of oxidized and reduced nitrogen, respectively.}, + abstract = {Despite significant reductions in nitrogen emissions achieved in Europe during the last three decades, eutrophication remains an environmental concern in the Baltic Sea basin. Recently, a number of comprehensive modelling studies have been conducted for the HELCOM Commission to inform the 2021 update of the Baltic Sea Action Plan. The calculations have focused on trends in airborne nitrogen deposition to the Baltic Sea and its nine sub-basins during the 2000–2017 period, the identification and ranking of the main contributors to deposition, as well as future projections for 2030, assuming compliance with the Gothenburg Protocol and the EU NEC Directive. This paper synthesizes the main results from these studies and puts them into the context of maximum allowable nutrient inputs to the Baltic Sea. According to our results, the airborne annual deposition to the Baltic Sea in 2017 amounted to 122.6 Gg(N) of oxidized nitrogen and 105.3 Gg(N) of reduced nitrogen, corresponding to a decrease since 2000 by, respectively, 39% and 11%. In order to filter out the large inter-annual variability due to meteorology and to better reflect trends in emissions, weather-normalized depositions of nitrogen have been calculated as well, according to which the decreases since 2000 amount to 35%, 7% and 25% for oxidized, reduced and total nitrogen, respectively. In 2017, Germany, Poland and Denmark were the most important contributors to airborne deposition of total (oxidized + reduced) nitrogen to the Baltic Sea. Agriculture contributed most to reduced nitrogen deposition, while the transport sector contributed most to oxidized nitrogen deposition. Agriculture in Germany was the single-most important contributor to nitrogen deposition to the Baltic Sea in 2017 (accounting for about 15% of the total), but there are numerous other important sectoral contributions. Emissions of nitrogen from the nine HELCOM Contracting Parties contributed 49%, 76% and 61% to oxidized, reduced and total nitrogen deposition, respectively. Assuming full compliance with the EU NEC Directive and the Gothenburg Protocol, significant further reductions in nitrogen deposition can be achieved by 2030, down to an annual deposition of 72.7 Gg(N) and 84.7 Gg(N) of oxidized and reduced nitrogen, respectively.}, keywords = {Nitrogen emissions Atmospheric transport Airborne nitrogen deposition @@ -5661,7 +5705,7 @@ Source allocation}, volume = {28}, number = {5}, pages = {713-720}, - abstract = {Summary In Lake Võrtsjärv pikeperch was observed not to shift to piscivory in their first autumn of life, although juvenile stages of a variety of fish species were abundant in the lake. It was hypothesized that the diets of predator and prey fish fry overlap and that coarse fish species are important food competitors for juvenile piscivores and thus, pikeperch and perch fry do not shift to piscivory during their first growing season. To discover the possible linkages in this pattern, in 2009 the feeding relationships of pikeperch, perch, ruffe and roach fry were analysed. The stomach content analyses showed that in the summer period, Mesocyclops leuckarti was the most frequent prey for perch and ruffe, pikeperch consumed Leptodora kindti in large quantities, and roach ate mostly plant material. Towards autumn, M. leuckarti was the most abundant prey for all percids. However, average stomach content weight and the number of prey items eaten by ruffe were considerably higher than for other fish fry. Since the feeding opportunities of fish fry are considered poor in the examined lake, the prey has the potential to restrict the recruitment to piscivory of their predators, as prey fish seem to have better abilities to persist in this ecosystem. Furthermore, supposed competition in the juvenile stage may result in a reduced top-down effect on coarse fish.}, + abstract = {Summary In Lake Võrtsjärv pikeperch was observed not to shift to piscivory in their first autumn of life, although juvenile stages of a variety of fish species were abundant in the lake. It was hypothesized that the diets of predator and prey fish fry overlap and that coarse fish species are important food competitors for juvenile piscivores and thus, pikeperch and perch fry do not shift to piscivory during their first growing season. To discover the possible linkages in this pattern, in 2009 the feeding relationships of pikeperch, perch, ruffe and roach fry were analysed. The stomach content analyses showed that in the summer period, Mesocyclops leuckarti was the most frequent prey for perch and ruffe, pikeperch consumed Leptodora kindti in large quantities, and roach ate mostly plant material. Towards autumn, M. leuckarti was the most abundant prey for all percids. However, average stomach content weight and the number of prey items eaten by ruffe were considerably higher than for other fish fry. Since the feeding opportunities of fish fry are considered poor in the examined lake, the prey has the potential to restrict the recruitment to piscivory of their predators, as prey fish seem to have better abilities to persist in this ecosystem. Furthermore, supposed competition in the juvenile stage may result in a reduced top-down effect on coarse fish.}, ISSN = {0175-8659}, DOI = {https://doi.org/10.1111/j.1439-0426.2012.02008.x}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0426.2012.02008.x}, @@ -6196,7 +6240,7 @@ Climate change}, journal = {Climate Dynamics}, volume = {53}, pages = {5945–5966}, - abstract = {This model study investigates summer hydrographic changes in response to climate projections following the CMIP5 RCP8.5 scenario. We use the high resolution regional coupled ocean–sea ice–atmosphere model RCA4–NEMO to downscale an ensemble of five global climate projections with a main focus on the Baltic Sea and neighboring shelf basins to the west. We find consistently across the ensemble a northward shift in the mean summer position of the westerlies at the end of the twenty-first century compared to the twentieth century. Associated with this is an anomalous precipitation pattern marked by increased rainfall over northern Europe and dryer conditions over the continental central part. In response to these large-scale atmospheric changes, a strong freshening mainly resulting from a higher net precipitation over the year combined with higher annual mean runoff is registered for the Baltic Sea and adjacent seas. The strongest freshening takes place in the southern Skagerrak region where stronger winds enhance the cyclonic circulation and by this, recirculation of fresher waters from the Baltic Sea strengthens. In the Baltic Sea freshening leads to a reduction in basin averaged salinities between 0.6 and 2.3 g kg−1 throughout the ensemble. Likewise, the sea surface temperature response in the Baltic Sea varies between + 2.5 and + 4.7 K depending on the applied global model scenario. The climate induced changes in atmospheric forcing have further consequences for the large-scale circulation in the Baltic Sea. All ensemble members indicate a strengthening of the zonal, wind driven near surface overturning circulation in the southwestern Baltic Sea towards the end of the twenty-first century whereas the more thermohaline driven overturning at depth is reduced by ~ 25%. In the Baltic Proper, the meridional overturning shows no clear climate change signal. However, three out of five ensemble members indicate at least a northward expansion of the main overturning cell. In the Bothnian Sea, all ensemble members show a significant weakening of the meridional overturning. The entire ensemble consistently indicates a basin-wide intensification of the pycnocline (9–35%) for the Baltic Sea and a shallowing of the pycnocline depth in most regions as well. In the Baltic Sea, which is dominated by mesohaline conditions under the historical period, the changes in salinity at the end of the twenty-first century have turned wide areas to be dominated by oligohaline conditions as a result of climate change. Potential consequences for biogeochemical conditions and implications for biodiversity are discussed.}, + abstract = {This model study investigates summer hydrographic changes in response to climate projections following the CMIP5 RCP8.5 scenario. We use the high resolution regional coupled ocean–sea ice–atmosphere model RCA4–NEMO to downscale an ensemble of five global climate projections with a main focus on the Baltic Sea and neighboring shelf basins to the west. We find consistently across the ensemble a northward shift in the mean summer position of the westerlies at the end of the twenty-first century compared to the twentieth century. Associated with this is an anomalous precipitation pattern marked by increased rainfall over northern Europe and dryer conditions over the continental central part. In response to these large-scale atmospheric changes, a strong freshening mainly resulting from a higher net precipitation over the year combined with higher annual mean runoff is registered for the Baltic Sea and adjacent seas. The strongest freshening takes place in the southern Skagerrak region where stronger winds enhance the cyclonic circulation and by this, recirculation of fresher waters from the Baltic Sea strengthens. In the Baltic Sea freshening leads to a reduction in basin averaged salinities between 0.6 and 2.3 g kg−1 throughout the ensemble. Likewise, the sea surface temperature response in the Baltic Sea varies between + 2.5 and + 4.7 K depending on the applied global model scenario. The climate induced changes in atmospheric forcing have further consequences for the large-scale circulation in the Baltic Sea. All ensemble members indicate a strengthening of the zonal, wind driven near surface overturning circulation in the southwestern Baltic Sea towards the end of the twenty-first century whereas the more thermohaline driven overturning at depth is reduced by ~ 25%. In the Baltic Proper, the meridional overturning shows no clear climate change signal. However, three out of five ensemble members indicate at least a northward expansion of the main overturning cell. In the Bothnian Sea, all ensemble members show a significant weakening of the meridional overturning. The entire ensemble consistently indicates a basin-wide intensification of the pycnocline (9–35%) for the Baltic Sea and a shallowing of the pycnocline depth in most regions as well. In the Baltic Sea, which is dominated by mesohaline conditions under the historical period, the changes in salinity at the end of the twenty-first century have turned wide areas to be dominated by oligohaline conditions as a result of climate change. Potential consequences for biogeochemical conditions and implications for biodiversity are discussed.}, ISSN = {1432-0894}, DOI = {https://doi.org/10.1007/s00382-019-04908-9}, url = {https://doi.org/10.1007/s00382-019-04908-9}, @@ -6400,7 +6444,7 @@ Carbon cycling}, journal = {Journal of Marine Systems}, volume = {211}, pages = {103397}, - abstract = {Future acidification of coastal seas will depend not only on the development of atmospheric CO2 partial pressure (pCO2), but also on changes in the catchment areas, exchange with the adjacent ocean, and internal cycling of carbon and nutrients. Here we use a coupled physical-biogeochemical Baltic Sea model to quantify the sensitivity of pH to changes both in external forcing and internal processes. The experiments include changes in runoff, supply of dissolved inorganic carbon (DIC) and total alkalinity (AT), nutrient loads, exchange between the Baltic and North Seas, and atmospheric pCO2. We furthermore address the potential different future developments of runoff and river loads in boreal and continental catchments, respectively. Changes in atmospheric pCO2 exert the strongest control on future pH according to our calculations. This CO2-induced acidification could be further enhanced in the case of desalination of the Baltic Sea, although increased concentrations of AT in the river runoff due to increased weathering to some extent could counteract acidification. Reduced nutrient loads and productivity would reduce the average annual surface water pH but at the same time slightly increase wintertime surface water pH (the annual pH minimum). The response time of surface water pH to sudden changes in atmospheric pCO2 is approximately one month, whereas response times to changes in e.g. runoff and AT/DIC loads are more related to residence times of water and salt (>30 years). It seems unlikely that the projected future increase in atmospheric pCO2 and associated pH reduction could be fully counteracted by any of the other processes addressed in our experiments.}, + abstract = {Future acidification of coastal seas will depend not only on the development of atmospheric CO2 partial pressure (pCO2), but also on changes in the catchment areas, exchange with the adjacent ocean, and internal cycling of carbon and nutrients. Here we use a coupled physical-biogeochemical Baltic Sea model to quantify the sensitivity of pH to changes both in external forcing and internal processes. The experiments include changes in runoff, supply of dissolved inorganic carbon (DIC) and total alkalinity (AT), nutrient loads, exchange between the Baltic and North Seas, and atmospheric pCO2. We furthermore address the potential different future developments of runoff and river loads in boreal and continental catchments, respectively. Changes in atmospheric pCO2 exert the strongest control on future pH according to our calculations. This CO2-induced acidification could be further enhanced in the case of desalination of the Baltic Sea, although increased concentrations of AT in the river runoff due to increased weathering to some extent could counteract acidification. Reduced nutrient loads and productivity would reduce the average annual surface water pH but at the same time slightly increase wintertime surface water pH (the annual pH minimum). The response time of surface water pH to sudden changes in atmospheric pCO2 is approximately one month, whereas response times to changes in e.g. runoff and AT/DIC loads are more related to residence times of water and salt (>30 years). It seems unlikely that the projected future increase in atmospheric pCO2 and associated pH reduction could be fully counteracted by any of the other processes addressed in our experiments.}, keywords = {Marine carbonate system Physical-biogeochemical modelling Sensitivity experiments @@ -6581,7 +6625,7 @@ https://www.clim-past.net/7/451/2011/cp-7-451-2011.pdf}, publisher = {Springer International Publishing}, address = {Cham}, pages = {145-153}, - abstract = {Sea ice conditions in the Baltic Sea have been systematically monitored for more than 100 years. All sea ice-related parameters display large interannual variability, but a change towards milder ice winters has been observed over the past 100 years: in particular, the annual maximum ice extent has decreased and the length of the ice season has become shorter. There is no correlation between consecutive ice seasons because the thermal memory of the Baltic Sea is only 2–3 months. Interannual variabilityVariabilityin sea ice conditions is principally driven by the large-scale atmospheric circulation, described by the North Atlantic Oscillation. In addition to a tendency towards milder winters, the occurrence of severe ice winters has also decreased considerably over the past 25 years.}, + abstract = {Sea ice conditions in the Baltic Sea have been systematically monitored for more than 100 years. All sea ice-related parameters display large interannual variability, but a change towards milder ice winters has been observed over the past 100 years: in particular, the annual maximum ice extent has decreased and the length of the ice season has become shorter. There is no correlation between consecutive ice seasons because the thermal memory of the Baltic Sea is only 2–3 months. Interannual variabilityVariabilityin sea ice conditions is principally driven by the large-scale atmospheric circulation, described by the North Atlantic Oscillation. In addition to a tendency towards milder winters, the occurrence of severe ice winters has also decreased considerably over the past 25 years.}, ISBN = {978-3-319-16006-1}, DOI = {https://doi.org/10.1007/978-3-319-16006-1_8}, url = {https://doi.org/10.1007/978-3-319-16006-1_8}, @@ -6676,7 +6720,7 @@ https://www.clim-past.net/7/451/2011/cp-7-451-2011.pdf}, volume = {142}, number = {1}, pages = {25-33}, - abstract = {It has been suggested that larval survival determines the year-class strength in most marine fish species. During their growth and development, the ability of the larvae to catch prey and avoid predation will increase. However, the factors affecting short-term changes in the growth of Baltic Sea herring have been little studied in the field. We collected Baltic herring (Clupea harengus membras L.) larvae from five different towing areas in the Archipelago Sea (SW Finland) during May and June 1989, right after the main spawning season. Twenty thousand two hundred and ten larvae were analysed and the area-specific growth rate (i.e. increase in standard length) was estimated by tracing the larval cohorts from the length–frequency data. This represents the first Baltic herring study with daily sampling during a long study period. The growth rate was related to environmental factors, such as temperature, number of zooplankters, and wind speed and direction. Large variation in larval growth rate occurred between areas: lowest and highest growth rates were 0.18 and 0.52 mm·day–1. Temperature was an important variable controlling larval-fish growth rate. An increase of one 1°C in average water temperature corresponded to an increase in growth rate of 0.043 mm·day–1. This may have been caused either by a direct temperature effect (changes in metabolic rate) or by the indirect effect of changes in food availability. We also found the densest herring populations in the areas with highest average water temperature. However, temperature and larval growth rate both increased towards the inner archipelago.}, + abstract = {It has been suggested that larval survival determines the year-class strength in most marine fish species. During their growth and development, the ability of the larvae to catch prey and avoid predation will increase. However, the factors affecting short-term changes in the growth of Baltic Sea herring have been little studied in the field. We collected Baltic herring (Clupea harengus membras L.) larvae from five different towing areas in the Archipelago Sea (SW Finland) during May and June 1989, right after the main spawning season. Twenty thousand two hundred and ten larvae were analysed and the area-specific growth rate (i.e. increase in standard length) was estimated by tracing the larval cohorts from the length–frequency data. This represents the first Baltic herring study with daily sampling during a long study period. The growth rate was related to environmental factors, such as temperature, number of zooplankters, and wind speed and direction. Large variation in larval growth rate occurred between areas: lowest and highest growth rates were 0.18 and 0.52 mm·day–1. Temperature was an important variable controlling larval-fish growth rate. An increase of one 1°C in average water temperature corresponded to an increase in growth rate of 0.043 mm·day–1. This may have been caused either by a direct temperature effect (changes in metabolic rate) or by the indirect effect of changes in food availability. We also found the densest herring populations in the areas with highest average water temperature. However, temperature and larval growth rate both increased towards the inner archipelago.}, ISSN = {1432-1793}, DOI = {https://doi.org/10.1007/s00227-002-0933-3}, url = {https://doi.org/10.1007/s00227-002-0933-3}, @@ -6896,7 +6940,7 @@ Baltic Sea}, volume = {19}, number = {1}, pages = {129-135}, - abstract = {Summary 1 Winter survival rate in Harbour Seal pups is significantly correlated with the autumn body mass of pups. Multi-type mark–recapture statistics were applied to individual re-sighting histories of branded seals, and survival probability was estimated with weight as a covariate. The probability of surviving to an age of 1 year is only 0·63 for the smallest pups at 17 kg, whereas pups at 32 kg have a survival probability of 0·96. 2 An energetic model for juvenile Harbour Seals reveals how metabolic rate is related to body mass, skin surface area, blubber thickness and water temperature. There is an increasing thermal stress with decreasing body size of pups. Low winter water temperatures induce a negative energy balance in small pups, which is a probable cause of the observed mass-dependent survival. 3 This study explicitly links a physical property of the environment, sea-water temperature, to energetics and life history. The approach opens possibilities for studying aspects of life-history evolution, such as optimal weaning weight and pupping time, in marine mammals.}, + abstract = {Summary 1 Winter survival rate in Harbour Seal pups is significantly correlated with the autumn body mass of pups. Multi-type mark–recapture statistics were applied to individual re-sighting histories of branded seals, and survival probability was estimated with weight as a covariate. The probability of surviving to an age of 1 year is only 0·63 for the smallest pups at 17 kg, whereas pups at 32 kg have a survival probability of 0·96. 2 An energetic model for juvenile Harbour Seals reveals how metabolic rate is related to body mass, skin surface area, blubber thickness and water temperature. There is an increasing thermal stress with decreasing body size of pups. Low winter water temperatures induce a negative energy balance in small pups, which is a probable cause of the observed mass-dependent survival. 3 This study explicitly links a physical property of the environment, sea-water temperature, to energetics and life history. The approach opens possibilities for studying aspects of life-history evolution, such as optimal weaning weight and pupping time, in marine mammals.}, ISSN = {0269-8463}, DOI = {https://doi.org/10.1111/j.0269-8463.2005.00945.x}, url = {https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.0269-8463.2005.00945.x}, @@ -6925,7 +6969,7 @@ Baltic Sea}, publisher = {Springer International Publishing}, address = {Cham}, pages = {15-35}, - abstract = {The change of coastline positions of the Baltic Sea is mainly determined by both the eustatic sea-level change and the glacio-isostatic adjustment (GIA). For changes on the Holocene time scale, the relative sea-level change can be reconstructed from paleo-coastline positions and correspondingly dated sediments and organic remains. On the decadal scale, tide gauge data are available. Both data sets display the relative value of sea-level change resulting from the superposition of climatically and meteorologically induced factors, vertical crustal displacement, and related gravitational forces. The isolation of the GIA signal from the compound relative sea-level change data plays a critical role for future projections of coastline changes within the frame of coastal zone management. To separate different components of sea-level data sets, statistical methods for the exploration of empirical water level, meteorological, and GPS data are combined with analytical methods to solve the sea-level equation. In the result, the pattern of vertical crustal movement can be displayed as maps covering the uplifting Fennoscandian Shield and its subsiding belt. Whereas along the uplifting coasts morphodynamic processes play a subordinated role, in the subsiding Southeast and South, Quaternary sediments are permanently exposed to coastal erosion, sediment transport, and re-deposition. This mainly wave-driven sediment dynamics together with aeolian processes depend on meteorological forcing of the in general west-east directed air-flow from the northern Atlantic Ocean to Eurasia. Regional coastal morphogenesis can generally be described by alongshore sediment transport pattern deduced from the integration of subregional to local models of transport capacities. For future projection, coastlines and the morphology of the adjacent zones have to be regarded a function of its position related to the vertical displacement of the Earth's crust, the regional climatic and meteorological conditions, and the geological setting. Results of climate modelling, the Earth’s visco-elastic response to the deglaciation, geological data and regional sediment transport capacities have to be interpreted comprehensively.}, + abstract = {The change of coastline positions of the Baltic Sea is mainly determined by both the eustatic sea-level change and the glacio-isostatic adjustment (GIA). For changes on the Holocene time scale, the relative sea-level change can be reconstructed from paleo-coastline positions and correspondingly dated sediments and organic remains. On the decadal scale, tide gauge data are available. Both data sets display the relative value of sea-level change resulting from the superposition of climatically and meteorologically induced factors, vertical crustal displacement, and related gravitational forces. The isolation of the GIA signal from the compound relative sea-level change data plays a critical role for future projections of coastline changes within the frame of coastal zone management. To separate different components of sea-level data sets, statistical methods for the exploration of empirical water level, meteorological, and GPS data are combined with analytical methods to solve the sea-level equation. In the result, the pattern of vertical crustal movement can be displayed as maps covering the uplifting Fennoscandian Shield and its subsiding belt. Whereas along the uplifting coasts morphodynamic processes play a subordinated role, in the subsiding Southeast and South, Quaternary sediments are permanently exposed to coastal erosion, sediment transport, and re-deposition. This mainly wave-driven sediment dynamics together with aeolian processes depend on meteorological forcing of the in general west-east directed air-flow from the northern Atlantic Ocean to Eurasia. Regional coastal morphogenesis can generally be described by alongshore sediment transport pattern deduced from the integration of subregional to local models of transport capacities. For future projection, coastlines and the morphology of the adjacent zones have to be regarded a function of its position related to the vertical displacement of the Earth's crust, the regional climatic and meteorological conditions, and the geological setting. Results of climate modelling, the Earth’s visco-elastic response to the deglaciation, geological data and regional sediment transport capacities have to be interpreted comprehensively.}, ISBN = {978-3-319-49894-2}, DOI = {https://doi.org/10.1007/978-3-319-49894-2_2}, url = {https://doi.org/10.1007/978-3-319-49894-2_2}, @@ -7031,7 +7075,7 @@ climate models}, journal = {Geophysical Research Letters}, volume = {39}, number = {18}, - abstract = {Projected changes in the extra-tropical wintertime storm tracks are investigated using the multi-model ensembles from both the third and fifth phases of the World Climate Research Programme's Coupled Model Intercomparison Project (CMIP3 and CMIP5). The aim is to characterize the magnitude of the storm track responses relative to their present-day year-to-year variability. For the experiments considered, the ‘middle-of-the-road’ scenarios in each CMIP, there are regions of the Northern Hemisphere where the responses of up to 40% of the models exceed half of the inter-annual variability, and for the Southern Hemisphere there are regions where up to 60% of the model responses exceed half of the inter-annual variability.}, + abstract = {Projected changes in the extra-tropical wintertime storm tracks are investigated using the multi-model ensembles from both the third and fifth phases of the World Climate Research Programme's Coupled Model Intercomparison Project (CMIP3 and CMIP5). The aim is to characterize the magnitude of the storm track responses relative to their present-day year-to-year variability. For the experiments considered, the ‘middle-of-the-road’ scenarios in each CMIP, there are regions of the Northern Hemisphere where the responses of up to 40% of the models exceed half of the inter-annual variability, and for the Southern Hemisphere there are regions where up to 60% of the model responses exceed half of the inter-annual variability.}, ISSN = {0094-8276}, DOI = {https://doi.org/10.1029/2012GL052873}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012GL052873}, @@ -7046,7 +7090,7 @@ climate models}, volume = {36}, number = {1}, pages = {120-132}, - abstract = {Abstract Shifts in microbial communities and their functioning in response to environmental change result from contemporary interspecific and intraspecific diversity changes. Interspecific changes are driven by ecological shifts in species composition, while intraspecific changes are here assumed to be dominated by evolutionary shifts in genotype frequency. Quantifying the relative contributions of interspecific and intraspecific diversity shifts to community change thus addresses the essential, yet understudied question as to how important ecological and evolutionary contributions are to total community changes. This debate is to date practically constrained by (a) a lack of studies integrating across organizational levels and (b) a mismatch between data requirements of existing partitioning metrics and the feasibility to collect such data, especially in microscopic organisms like phytoplankton. We experimentally assessed the relative ecological and evolutionary contributions to total phytoplankton community changes using a new design and validated its functionality by comparisons to established partitioning metrics. We used a community of coexisting Emiliania huxleyi and Chaetoceros affinis with initially nine genotypes each. First, we exposed the community to elevated CO2 concentration for 80 days (~50 generations) to induce interspecific and intraspecific diversity changes and a total abundance change. Second, we independently manipulated the induced interspecific and intraspecific diversity changes in an assay to quantify the corresponding ecological and evolutionary contributions to the total change. Third, we applied existing partitioning metrics to our experimental data and compared the outcomes. Total phytoplankton abundance declined to one-fifth in the high CO2 exposed community compared to ambient conditions. Consistently across all applied partitioning metrics, the abundance decline could predominantly be explained by ecological shifts and to a low extent by evolutionary changes. We discuss potential consequences of the observed community changes on ecosystem functioning. Furthermore, we explain that the low evolutionary contributions likely resulted of intraspecific diversity changes that occurred irrespectively of CO2. We discuss how the assay could be upscaled to more realistic settings, including more species and drivers. Overall, the presented calculations of eco-evolutionary contributions to phytoplankton community changes constitute another important step towards understanding future phytoplankton shifts, and eco-evolutionary dynamics in general. A free Plain Language Summary can be found within the Supporting Information of this article.}, + abstract = {Abstract Shifts in microbial communities and their functioning in response to environmental change result from contemporary interspecific and intraspecific diversity changes. Interspecific changes are driven by ecological shifts in species composition, while intraspecific changes are here assumed to be dominated by evolutionary shifts in genotype frequency. Quantifying the relative contributions of interspecific and intraspecific diversity shifts to community change thus addresses the essential, yet understudied question as to how important ecological and evolutionary contributions are to total community changes. This debate is to date practically constrained by (a) a lack of studies integrating across organizational levels and (b) a mismatch between data requirements of existing partitioning metrics and the feasibility to collect such data, especially in microscopic organisms like phytoplankton. We experimentally assessed the relative ecological and evolutionary contributions to total phytoplankton community changes using a new design and validated its functionality by comparisons to established partitioning metrics. We used a community of coexisting Emiliania huxleyi and Chaetoceros affinis with initially nine genotypes each. First, we exposed the community to elevated CO2 concentration for 80 days (~50 generations) to induce interspecific and intraspecific diversity changes and a total abundance change. Second, we independently manipulated the induced interspecific and intraspecific diversity changes in an assay to quantify the corresponding ecological and evolutionary contributions to the total change. Third, we applied existing partitioning metrics to our experimental data and compared the outcomes. Total phytoplankton abundance declined to one-fifth in the high CO2 exposed community compared to ambient conditions. Consistently across all applied partitioning metrics, the abundance decline could predominantly be explained by ecological shifts and to a low extent by evolutionary changes. We discuss potential consequences of the observed community changes on ecosystem functioning. Furthermore, we explain that the low evolutionary contributions likely resulted of intraspecific diversity changes that occurred irrespectively of CO2. We discuss how the assay could be upscaled to more realistic settings, including more species and drivers. Overall, the presented calculations of eco-evolutionary contributions to phytoplankton community changes constitute another important step towards understanding future phytoplankton shifts, and eco-evolutionary dynamics in general. A free Plain Language Summary can be found within the Supporting Information of this article.}, ISSN = {0269-8463}, DOI = {https://doi.org/10.1111/1365-2435.13923}, url = {https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1365-2435.13923}, @@ -7550,7 +7594,7 @@ vía de invasión}, journal = {Atmospheric Environment}, volume = {144}, pages = {208-219}, - abstract = {Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2–5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global action to reduce air pollutant emissions is needed to make sure that ozone damage in Europe decreases towards the middle of this century.}, + abstract = {Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2–5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global action to reduce air pollutant emissions is needed to make sure that ozone damage in Europe decreases towards the middle of this century.}, keywords = {Ozone Air quality Energy scenario @@ -7697,7 +7741,7 @@ Maturation}, volume = {160}, number = {8}, pages = {2073-2087}, - abstract = {Acidification of the World’s oceans may directly impact reproduction, performance and shell formation of marine calcifying organisms. In addition, since shell production is costly and stress in general draws on an organism’s energy budget, shell growth and stability of bivalves should indirectly be affected by environmental stress. The aim of this study was to investigate whether a combination of warming and acidification leads to increased physiological stress (lipofuscin accumulation and mortality) and affects the performance [shell growth, shell breaking force, condition index (Ci)] of young Mytilus edulis and Arctica islandica from the Baltic Sea. We cultured the bivalves in a fully-crossed 2-factorial experimental setup (seawater (sw) pCO2 levels “low”, “medium” and “high” for both species, temperature levels 7.5, 10, 16, 20 and 25 °C for M. edulis and 7.5, 10 and 16 °C for A. islandica) for 13 weeks in summer. Mytilus edulis and A. islandica appeared to tolerate wide ranges of sw temperature and pCO2. Lipofuscin accumulation of M. edulis increased with temperature while the Ci decreased, but shell growth of the mussels only sharply decreased while its mortality increased between 20 and 25 °C. In A. islandica, lipofuscin accumulation increased with temperature, whereas the Ci, shell growth and shell breaking force decreased. The pCO2 treatment had only marginal effects on the measured parameters of both bivalve species. Shell growth of both bivalve species was not impaired by under-saturation of the sea water with respect to aragonite and calcite. Furthermore, independently of water temperatures shell breaking force of both species and shell growth of A. islandica remained unaffected by the applied elevated sw pCO2 for several months. Only at the highest temperature (25 °C), growth arrest of M. edulis was recorded at the high sw pCO2 treatment and the Ci of M. edulis was slightly higher at the medium sw pCO2 treatment than at the low and high sw pCO2 treatments. The only effect of elevated sw pCO2 on A. islandica was an increase in lipofuscin accumulation at the high sw pCO2 treatment compared to the medium sw pCO2 treatment. Our results show that, despite this robustness, growth of both M. edulis and A. islandica can be reduced if sw temperatures remain high for several weeks in summer. As large body size constitutes an escape from crab and sea star predation, this can make bivalves presumably more vulnerable to predation—with possible negative consequences on population growth. In M. edulis, but not in A. islandica, this effect is amplified by elevated sw pCO2. We follow that combined effects of elevated sw pCO2 and ocean warming might cause shifts in future Western Baltic Sea community structures and ecosystem services; however, only if predators or other interacting species do not suffer as strong from these stressors.}, + abstract = {Acidification of the World’s oceans may directly impact reproduction, performance and shell formation of marine calcifying organisms. In addition, since shell production is costly and stress in general draws on an organism’s energy budget, shell growth and stability of bivalves should indirectly be affected by environmental stress. The aim of this study was to investigate whether a combination of warming and acidification leads to increased physiological stress (lipofuscin accumulation and mortality) and affects the performance [shell growth, shell breaking force, condition index (Ci)] of young Mytilus edulis and Arctica islandica from the Baltic Sea. We cultured the bivalves in a fully-crossed 2-factorial experimental setup (seawater (sw) pCO2 levels “low”, “medium” and “high” for both species, temperature levels 7.5, 10, 16, 20 and 25 °C for M. edulis and 7.5, 10 and 16 °C for A. islandica) for 13 weeks in summer. Mytilus edulis and A. islandica appeared to tolerate wide ranges of sw temperature and pCO2. Lipofuscin accumulation of M. edulis increased with temperature while the Ci decreased, but shell growth of the mussels only sharply decreased while its mortality increased between 20 and 25 °C. In A. islandica, lipofuscin accumulation increased with temperature, whereas the Ci, shell growth and shell breaking force decreased. The pCO2 treatment had only marginal effects on the measured parameters of both bivalve species. Shell growth of both bivalve species was not impaired by under-saturation of the sea water with respect to aragonite and calcite. Furthermore, independently of water temperatures shell breaking force of both species and shell growth of A. islandica remained unaffected by the applied elevated sw pCO2 for several months. Only at the highest temperature (25 °C), growth arrest of M. edulis was recorded at the high sw pCO2 treatment and the Ci of M. edulis was slightly higher at the medium sw pCO2 treatment than at the low and high sw pCO2 treatments. The only effect of elevated sw pCO2 on A. islandica was an increase in lipofuscin accumulation at the high sw pCO2 treatment compared to the medium sw pCO2 treatment. Our results show that, despite this robustness, growth of both M. edulis and A. islandica can be reduced if sw temperatures remain high for several weeks in summer. As large body size constitutes an escape from crab and sea star predation, this can make bivalves presumably more vulnerable to predation—with possible negative consequences on population growth. In M. edulis, but not in A. islandica, this effect is amplified by elevated sw pCO2. We follow that combined effects of elevated sw pCO2 and ocean warming might cause shifts in future Western Baltic Sea community structures and ecosystem services; however, only if predators or other interacting species do not suffer as strong from these stressors.}, ISSN = {1432-1793}, DOI = {https://doi.org/10.1007/s00227-012-2080-9}, url = {https://doi.org/10.1007/s00227-012-2080-9}, @@ -7921,7 +7965,7 @@ Gulf of Bothnia. (C) 2008 Elsevier Ltd. All rights reserved.}, volume = {243}, number = {1}, pages = {143-156}, - abstract = {The tide-less SW Baltic Sea has a paraglacial coast. Alternating Pleistocene cliff sections and Holocene barrier systems separate shallow lagoons from the open sea. More than 300 cores penetrating the Holocene coastal sequence allowed for detailed reconstruction of the palaeogeographic evolution. The sequence formed in response to transgression in the early Holocene (∼8000 year BP). The barrier–cliff system evolution is described as four stages. Over these stages, dependencies of sedimentation processes to the rate of sea-level rise are obvious. To reconstruct palaeo-coast configurations, mass balance calculations were applied. Retreating cliff sections are seen as the main source for coastal sediment. Starting from mapped volumes of sand incorporated in barriers, cliff retreat in the last 8000 years is calculated to total 2400 m at maximum. Sediment supply to the coastal zone averaged over the larger part of the Holocene is approximately three times smaller than for the last hundreds years. This signals accelerated rise of sea-level since c. 1000 years and hints on what to expect when sea-level rises faster in the future. Such will cause intensified coastal erosion and eventually the formation of new inlets. A general drowning of the coastal landscape, as observed in the early Holocene is unlikely.}, + abstract = {The tide-less SW Baltic Sea has a paraglacial coast. Alternating Pleistocene cliff sections and Holocene barrier systems separate shallow lagoons from the open sea. More than 300 cores penetrating the Holocene coastal sequence allowed for detailed reconstruction of the palaeogeographic evolution. The sequence formed in response to transgression in the early Holocene (∼8000 year BP). The barrier–cliff system evolution is described as four stages. Over these stages, dependencies of sedimentation processes to the rate of sea-level rise are obvious. To reconstruct palaeo-coast configurations, mass balance calculations were applied. Retreating cliff sections are seen as the main source for coastal sediment. Starting from mapped volumes of sand incorporated in barriers, cliff retreat in the last 8000 years is calculated to total 2400 m at maximum. Sediment supply to the coastal zone averaged over the larger part of the Holocene is approximately three times smaller than for the last hundreds years. This signals accelerated rise of sea-level since c. 1000 years and hints on what to expect when sea-level rises faster in the future. Such will cause intensified coastal erosion and eventually the formation of new inlets. A general drowning of the coastal landscape, as observed in the early Holocene is unlikely.}, keywords = {sea-level rise barrier evolution palaeogeographic reconstruction @@ -8002,7 +8046,7 @@ Carbon cycling}, volume = {18}, number = {10}, pages = {3015-3032}, - abstract = {Biological invasions coupled with climate change drive changes in marine biodiversity. Warming climate and changes in hydrology may either enable or hinder the spread of non-indigenous species (NIS) and little is known about how climate change modifies the richness and impacts of NIS in specific sea areas. We calculated from climate change simulations (RCO-SCOBI model) the changes in summer time conditions which northern Baltic Sea may to go through by the end of the twenty-first century, e.g., 2–5 °C sea surface temperature rise and even up to 1.75 unit decrease in salinity. We reviewed the temperature and salinity tolerances (i.e., physiological tolerances and occurrence ranges in the field) of pelagic and benthic NIS established in—or with dispersal potential to—the northern Baltic Sea, and assessed how climate change will likely affect them. Our findings suggest a future decrease in barnacle larvae and an increase in Ponto-Caspian cladocerans in the pelagic community. In benthos, polychaetes, gastropods and decapods may become less abundant. By contrast, dreissenid bivalves, amphipods and mysids are expected to widen their distribution and increase in abundance in the coastal areas of the northern Baltic Sea. Potential salinity decrease acts as a major driver for NIS biogeography in the northern Baltic Sea, but temperature increase and extended summer season allow higher reproduction success in bivalves, zooplankton, amphipods and mysids. Successful NIS, i.e., coastal crustacean and bivalve species, pose a risk to native biota, as many of them have already demonstrated harmful effects in the Baltic Sea.}, + abstract = {Biological invasions coupled with climate change drive changes in marine biodiversity. Warming climate and changes in hydrology may either enable or hinder the spread of non-indigenous species (NIS) and little is known about how climate change modifies the richness and impacts of NIS in specific sea areas. We calculated from climate change simulations (RCO-SCOBI model) the changes in summer time conditions which northern Baltic Sea may to go through by the end of the twenty-first century, e.g., 2–5 °C sea surface temperature rise and even up to 1.75 unit decrease in salinity. We reviewed the temperature and salinity tolerances (i.e., physiological tolerances and occurrence ranges in the field) of pelagic and benthic NIS established in—or with dispersal potential to—the northern Baltic Sea, and assessed how climate change will likely affect them. Our findings suggest a future decrease in barnacle larvae and an increase in Ponto-Caspian cladocerans in the pelagic community. In benthos, polychaetes, gastropods and decapods may become less abundant. By contrast, dreissenid bivalves, amphipods and mysids are expected to widen their distribution and increase in abundance in the coastal areas of the northern Baltic Sea. Potential salinity decrease acts as a major driver for NIS biogeography in the northern Baltic Sea, but temperature increase and extended summer season allow higher reproduction success in bivalves, zooplankton, amphipods and mysids. Successful NIS, i.e., coastal crustacean and bivalve species, pose a risk to native biota, as many of them have already demonstrated harmful effects in the Baltic Sea.}, ISSN = {1573-1464}, DOI = {https://doi.org/10.1007/s10530-016-1197-z}, url = {https://doi.org/10.1007/s10530-016-1197-z}, @@ -8431,7 +8475,7 @@ Sciences of the Universe [physics]/Earth SciencesJournal articles}, volume = {25}, number = {7}, pages = {2285-2295}, - abstract = {Abstract A challenge facing ecologists trying to predict responses to climate change is the few recent analogous conditions to use for comparison. For example, negative relationships between ectotherm body size and temperature are common both across natural thermal gradients and in small-scale experiments. However, it is unknown if short-term body size responses are representative of long-term responses. Moreover, to understand population responses to warming, we must recognize that individual responses to temperature may vary over ontogeny. To enable predictions of how climate warming may affect natural populations, we therefore ask how body size and growth may shift in response to increased temperature over life history, and whether short- and long-term growth responses differ. We addressed these questions using a unique setup with multidecadal artificial heating of an enclosed coastal bay in the Baltic Sea and an adjacent reference area (both with unexploited populations), using before-after control-impact paired time-series analyses. We assembled individual growth trajectories of ~13,000 unique individuals of Eurasian perch and found that body growth increased substantially after warming, but the extent depended on body size: Only among small-bodied perch did growth increase with temperature. Moreover, the strength of this response gradually increased over the 24 year warming period. Our study offers a unique example of how warming can affect fish populations over multiple generations, resulting in gradual changes in body growth, varying as organisms develop. Although increased juvenile growth rates are in line with predictions of the temperature–size rule, the fact that a larger body size at age was maintained over life history contrasts to that same rule. Because the artificially heated area is a contemporary system mimicking a warmer sea, our findings can aid predictions of fish responses to further warming, taking into account that growth responses may vary both over an individual's life history and over time.}, + abstract = {Abstract A challenge facing ecologists trying to predict responses to climate change is the few recent analogous conditions to use for comparison. For example, negative relationships between ectotherm body size and temperature are common both across natural thermal gradients and in small-scale experiments. However, it is unknown if short-term body size responses are representative of long-term responses. Moreover, to understand population responses to warming, we must recognize that individual responses to temperature may vary over ontogeny. To enable predictions of how climate warming may affect natural populations, we therefore ask how body size and growth may shift in response to increased temperature over life history, and whether short- and long-term growth responses differ. We addressed these questions using a unique setup with multidecadal artificial heating of an enclosed coastal bay in the Baltic Sea and an adjacent reference area (both with unexploited populations), using before-after control-impact paired time-series analyses. We assembled individual growth trajectories of ~13,000 unique individuals of Eurasian perch and found that body growth increased substantially after warming, but the extent depended on body size: Only among small-bodied perch did growth increase with temperature. Moreover, the strength of this response gradually increased over the 24 year warming period. Our study offers a unique example of how warming can affect fish populations over multiple generations, resulting in gradual changes in body growth, varying as organisms develop. Although increased juvenile growth rates are in line with predictions of the temperature–size rule, the fact that a larger body size at age was maintained over life history contrasts to that same rule. Because the artificially heated area is a contemporary system mimicking a warmer sea, our findings can aid predictions of fish responses to further warming, taking into account that growth responses may vary both over an individual's life history and over time.}, ISSN = {1354-1013}, DOI = {https://doi.org/10.1111/gcb.14637}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14637}, @@ -8462,7 +8506,7 @@ Sciences of the Universe [physics]/Earth SciencesJournal articles}, publisher = {Springer International Publishing}, address = {Cham}, pages = {85-136}, - abstract = {This chapter discusses past and ongoing change in the following physical variables within the North Sea: temperature, salinity and stratification; currents and circulation; mean sea level; and extreme sea levels. Also considered are carbon dioxide; pH and nutrients; oxygen; suspended particulate matter and turbidity; coastal erosion, sedimentation and morphology; and sea ice. The distinctive character of the Wadden Sea is addressed, with a particular focus on nutrients and sediments. This chapter covers the past 200 years and focuses on the historical development of evidence (measurements, process understanding and models), the form, duration and accuracy of the evidence available, and what the evidence shows in terms of the state and trends in the respective variables. Much work has focused on detecting long-term change in the North Sea region, either from measurements or with models. Attempts to attribute such changes to, for example, anthropogenic forcing are still missing for the North Sea. Studies are urgently needed to assess consistency between observed changes and current expectations, in order to increase the level of confidence in projections of expected future conditions.}, + abstract = {This chapter discusses past and ongoing change in the following physical variables within the North Sea: temperature, salinity and stratification; currents and circulation; mean sea level; and extreme sea levels. Also considered are carbon dioxide; pH and nutrients; oxygen; suspended particulate matter and turbidity; coastal erosion, sedimentation and morphology; and sea ice. The distinctive character of the Wadden Sea is addressed, with a particular focus on nutrients and sediments. This chapter covers the past 200 years and focuses on the historical development of evidence (measurements, process understanding and models), the form, duration and accuracy of the evidence available, and what the evidence shows in terms of the state and trends in the respective variables. Much work has focused on detecting long-term change in the North Sea region, either from measurements or with models. Attempts to attribute such changes to, for example, anthropogenic forcing are still missing for the North Sea. Studies are urgently needed to assess consistency between observed changes and current expectations, in order to increase the level of confidence in projections of expected future conditions.}, ISBN = {978-3-319-39745-0}, DOI = {https://doi.org/10.1007/978-3-319-39745-0_3}, url = {https://doi.org/10.1007/978-3-319-39745-0_3}, @@ -8497,7 +8541,7 @@ VEMALA}, volume = {124}, number = {6}, pages = {1377-1392}, - abstract = {Abstract Aims The objective was to determine the effects of dietary substitution of fishmeal (FM) with live yeast and increasing water temperature on the diversity and composition of gut microbiota in rainbow trout. Methods and Results Fish were fed either FM or yeast (Saccharomyces cerevisiae) and reared in water temperatures of either 11°C (cold) or 18°C (warm) for 6 weeks. Luminal content and mucosa were collected from the distal gut and the load, diversity and species abundance of yeast and bacteria were analysed using agar plating, MALDI-TOF and rRNA gene amplicon sequencing. Yeast in the gut of fish fed FM were represented by S. cerevisiae, Rhodotorula spp. and Debaryomyces hansenii, while fish fed yeast contained 4–5 log higher CFU per g of yeast that were entirely represented by S. cerevisiae. For gut bacteria, sequencing of 16S rRNA gene amplicons using Illumina MiSeq showed lower bacterial diversity and abundance of lactic acid bacteria, especially Lactobacillus, in fish reared in warm rather than cold water. Fish fed yeast had similar bacterial diversity and lower abundance of Leuconostocaceae and Photobacterium compared with fish fed FM. Conclusions Feeding live yeast mainly increased yeast load in the gut, while increased water temperature significantly altered the gut microbiota of rainbow trout in terms of bacterial diversity and abundance. Significance and Impact of the Study Live yeast can replace 40% of FM without disrupting bacteria communities in the gut of rainbow trout, while increased water temperature due to seasonal fluctuations and/or climate change may result in a gut dysbiosis that may jeopardize the health of farmed fish.}, + abstract = {Abstract Aims The objective was to determine the effects of dietary substitution of fishmeal (FM) with live yeast and increasing water temperature on the diversity and composition of gut microbiota in rainbow trout. Methods and Results Fish were fed either FM or yeast (Saccharomyces cerevisiae) and reared in water temperatures of either 11°C (cold) or 18°C (warm) for 6 weeks. Luminal content and mucosa were collected from the distal gut and the load, diversity and species abundance of yeast and bacteria were analysed using agar plating, MALDI-TOF and rRNA gene amplicon sequencing. Yeast in the gut of fish fed FM were represented by S. cerevisiae, Rhodotorula spp. and Debaryomyces hansenii, while fish fed yeast contained 4–5 log higher CFU per g of yeast that were entirely represented by S. cerevisiae. For gut bacteria, sequencing of 16S rRNA gene amplicons using Illumina MiSeq showed lower bacterial diversity and abundance of lactic acid bacteria, especially Lactobacillus, in fish reared in warm rather than cold water. Fish fed yeast had similar bacterial diversity and lower abundance of Leuconostocaceae and Photobacterium compared with fish fed FM. Conclusions Feeding live yeast mainly increased yeast load in the gut, while increased water temperature significantly altered the gut microbiota of rainbow trout in terms of bacterial diversity and abundance. Significance and Impact of the Study Live yeast can replace 40% of FM without disrupting bacteria communities in the gut of rainbow trout, while increased water temperature due to seasonal fluctuations and/or climate change may result in a gut dysbiosis that may jeopardize the health of farmed fish.}, ISSN = {1364-5072}, DOI = {https://doi.org/10.1111/jam.13738}, url = {https://sfamjournals.onlinelibrary.wiley.com/doi/abs/10.1111/jam.13738}, @@ -8527,7 +8571,7 @@ VEMALA}, volume = {43}, number = {3}, pages = {337-351}, - abstract = {Dynamic model simulations of the future climate and projections of future lifestyles within the Baltic Sea Drainage Basin (BSDB) were considered in this study to estimate potential trends in future nutrient loads to the Baltic Sea. Total nitrogen and total phosphorus loads were estimated using a simple proxy based only on human population (to account for nutrient sources) and stream discharges (to account for nutrient transport). This population-discharge proxy provided a good estimate for nutrient loads across the seven sub-basins of the BSDB considered. All climate scenarios considered here produced increased nutrient loads to the Baltic Sea over the next 100 years. There was variation between the climate scenarios such that sub-basin and regional differences were seen in future nutrient runoff depending on the climate model and scenario considered. Regardless, the results of this study indicate that changes in lifestyle brought about through shifts in consumption and population potentially overshadow the climate effects on future nutrient runoff for the entire BSDB. Regionally, however, lifestyle changes appear relatively more important in the southern regions of the BSDB while climatic changes appear more important in the northern regions with regards to future increases in nutrient loads. From a whole-ecosystem management perspective of the BSDB, this implies that implementation of improved and targeted management practices can still bring about improved conditions in the Baltic Sea in the face of a warmer and wetter future climate.}, + abstract = {Dynamic model simulations of the future climate and projections of future lifestyles within the Baltic Sea Drainage Basin (BSDB) were considered in this study to estimate potential trends in future nutrient loads to the Baltic Sea. Total nitrogen and total phosphorus loads were estimated using a simple proxy based only on human population (to account for nutrient sources) and stream discharges (to account for nutrient transport). This population-discharge proxy provided a good estimate for nutrient loads across the seven sub-basins of the BSDB considered. All climate scenarios considered here produced increased nutrient loads to the Baltic Sea over the next 100 years. There was variation between the climate scenarios such that sub-basin and regional differences were seen in future nutrient runoff depending on the climate model and scenario considered. Regardless, the results of this study indicate that changes in lifestyle brought about through shifts in consumption and population potentially overshadow the climate effects on future nutrient runoff for the entire BSDB. Regionally, however, lifestyle changes appear relatively more important in the southern regions of the BSDB while climatic changes appear more important in the northern regions with regards to future increases in nutrient loads. From a whole-ecosystem management perspective of the BSDB, this implies that implementation of improved and targeted management practices can still bring about improved conditions in the Baltic Sea in the face of a warmer and wetter future climate.}, ISSN = {1654-7209}, DOI = {https://doi.org/10.1007/s13280-013-0416-4}, url = {https://doi.org/10.1007/s13280-013-0416-4}, @@ -8542,7 +8586,7 @@ VEMALA}, volume = {707}, number = {1}, pages = {109-133}, - abstract = {Despite over 100 years of phytoplankton research in the Baltic Sea, little is known about how the species composition has changed during this period, characterised by severe anthropogenic eutrophication. We investigated the phytoplankton communities in the northern Baltic Sea using data from 1903 to 1911 and 1993 to 2005; to minimise effects of methodological differences we focused on occurrence frequencies. We found that the historical and modern communities differed regarding both species composition and the relative importance of taxonomical groups. The most obvious differences were the increase of dinoflagellates and decrease in the diatom to dinoflagellate ratio in all seasons. Contrary to the widely held view that cyanophytes have gained significance, our results indicate that in terms of occurrence the group has not increased in summer, and has lost ground in both spring and autumn. Several shifts in the occurrence frequency and seasonality of individual taxa transpired. Examining our results in relation to environmental conditions we found that some changes may be symptomatic of climate change related pressures. However, statistical analyses revealed that an undefined ‘period effect’ was the most important factor separating the historical and modern phytoplankton communities. We interpret this ‘period effect’ as evidence for the direct and/or indirect influence of eutrophication.}, + abstract = {Despite over 100 years of phytoplankton research in the Baltic Sea, little is known about how the species composition has changed during this period, characterised by severe anthropogenic eutrophication. We investigated the phytoplankton communities in the northern Baltic Sea using data from 1903 to 1911 and 1993 to 2005; to minimise effects of methodological differences we focused on occurrence frequencies. We found that the historical and modern communities differed regarding both species composition and the relative importance of taxonomical groups. The most obvious differences were the increase of dinoflagellates and decrease in the diatom to dinoflagellate ratio in all seasons. Contrary to the widely held view that cyanophytes have gained significance, our results indicate that in terms of occurrence the group has not increased in summer, and has lost ground in both spring and autumn. Several shifts in the occurrence frequency and seasonality of individual taxa transpired. Examining our results in relation to environmental conditions we found that some changes may be symptomatic of climate change related pressures. However, statistical analyses revealed that an undefined ‘period effect’ was the most important factor separating the historical and modern phytoplankton communities. We interpret this ‘period effect’ as evidence for the direct and/or indirect influence of eutrophication.}, ISSN = {1573-5117}, DOI = {https://doi.org/10.1007/s10750-012-1414-4}, url = {https://doi.org/10.1007/s10750-012-1414-4}, @@ -8632,7 +8676,7 @@ VEMALA}, journal = {NAMMCO Scientific Publications}, volume = {1}, number = {0}, - abstract = {The study reviews earlier investigations on the distribution and abundance of ringed seals (Phoca hispida botnica) in the Baltic and presents the first statistically robust results for the entire area. A critical review of earlier counts of ringed seals from the Gulf of Riga and the Gulf of Finland reveals grossly exaggerated population estimates in these regions. This is confirmed by results from the first comprehensive surveys in the entire area carried out during 1994-1996. The estimated hauled-out Baltic population in 1996 was about 5,510 ± 42% (± 95% confidence interval). Of thisestimate 3,945 ± 1,732 (70%) were in the Gulf of Bothnia, 1,407 ± 590 (25%) in the Gulf of Riga and about 150 (5%) in the Gulf of Finland. Numbers in the Gulf of Bothnia have increased since 1988, but there are no data on trends in other areas, although numbers are low and half the local population in the Gulf of Finland may have died in a mass mortality in the autumn of 1991.}, + abstract = {The study reviews earlier investigations on the distribution and abundance of ringed seals (Phoca hispida botnica) in the Baltic and presents the first statistically robust results for the entire area. A critical review of earlier counts of ringed seals from the Gulf of Riga and the Gulf of Finland reveals grossly exaggerated population estimates in these regions. This is confirmed by results from the first comprehensive surveys in the entire area carried out during 1994-1996. The estimated hauled-out Baltic population in 1996 was about 5,510 ± 42% (± 95% confidence interval). Of thisestimate 3,945 ± 1,732 (70%) were in the Gulf of Bothnia, 1,407 ± 590 (25%) in the Gulf of Riga and about 150 (5%) in the Gulf of Finland. Numbers in the Gulf of Bothnia have increased since 1988, but there are no data on trends in other areas, although numbers are low and half the local population in the Gulf of Finland may have died in a mass mortality in the autumn of 1991.}, DOI = {https://doi.org/10.7557/3.2986}, url = {https://septentrio.uit.no/index.php/NAMMCOSP/article/view/2986}, year = {1998}, @@ -8748,7 +8792,7 @@ Oceanografi, hydrologi och vattenresurser}, publisher = {Springer International Publishing}, address = {Cham}, pages = {155-185}, - abstract = {This chapter describes observed changes in sea level and wind waves in the Baltic Sea basin over the past 200 years and the main climate drivers of this change. The datasets available for studying these are described in detail. Recent climate change and land uplift are causing changes in sea level. Relative sea level is falling by 8.2 mm year−1 in the Gulf of Bothnia and slightly rising in parts of the southern Baltic Sea. Absolute sea level (ASL) is rising by 1.3–1.8 mm year−1, which is within the range of recent global estimates. The 30-year trends of Baltic Sea tide gaugeTide gaugerecords tend to increase, but similar or even slightly higher rates were observed around 1900 and 1950. Sea level in the Baltic Sea shows higher values during winter and lower values during spring and this seasonal amplitude increased between 1800 and 2000. The intensity of storm surges (extreme sea levels) may have increased in recent decades in some parts of the Baltic Sea. This may be linked to a long-term shift in storm tracks.}, + abstract = {This chapter describes observed changes in sea level and wind waves in the Baltic Sea basin over the past 200 years and the main climate drivers of this change. The datasets available for studying these are described in detail. Recent climate change and land uplift are causing changes in sea level. Relative sea level is falling by 8.2 mm year−1 in the Gulf of Bothnia and slightly rising in parts of the southern Baltic Sea. Absolute sea level (ASL) is rising by 1.3–1.8 mm year−1, which is within the range of recent global estimates. The 30-year trends of Baltic Sea tide gaugeTide gaugerecords tend to increase, but similar or even slightly higher rates were observed around 1900 and 1950. Sea level in the Baltic Sea shows higher values during winter and lower values during spring and this seasonal amplitude increased between 1800 and 2000. The intensity of storm surges (extreme sea levels) may have increased in recent decades in some parts of the Baltic Sea. This may be linked to a long-term shift in storm tracks.}, ISBN = {https://doi.org/978-3-319-16006-1}, DOI = {10.1007/978-3-319-16006-1_9}, url = {https://doi.org/10.1007/978-3-319-16006-1_9}, @@ -8798,7 +8842,7 @@ Oceanografi, hydrologi och vattenresurser}, journal = {Marine Environmental Research}, volume = {113}, pages = {164-173}, - abstract = {Projected, climate-driven changes in rainfall patterns are expected to alter the salinity (S) of estuaries and larger brackish water bodies, such as the Baltic Sea. Some marine fish larvae are potentially more sensitive to low salinity than older stages, hence we compared the low salinity tolerance of Atlantic herring (Clupea harengus) larvae at the individual and population levels including four populations in the North and Baltic Seas. Acute low salinity tolerance was similar (S = 1.9–2.7) across populations and increased with increasing body size. Based on this physiological threshold and a regionally down-scaled climate model, spawning habitats in the northern and eastern Baltic Sea are projected to be largely unsuitable for herring by 2100. Although adaptive mechanisms may attenuate the effect in some species, the limited physiological tolerance of fish larvae will remain an important bottleneck for the persistence of marine fish populations in brackish waters undergoing climate-driven freshening.}, + abstract = {Projected, climate-driven changes in rainfall patterns are expected to alter the salinity (S) of estuaries and larger brackish water bodies, such as the Baltic Sea. Some marine fish larvae are potentially more sensitive to low salinity than older stages, hence we compared the low salinity tolerance of Atlantic herring (Clupea harengus) larvae at the individual and population levels including four populations in the North and Baltic Seas. Acute low salinity tolerance was similar (S = 1.9–2.7) across populations and increased with increasing body size. Based on this physiological threshold and a regionally down-scaled climate model, spawning habitats in the northern and eastern Baltic Sea are projected to be largely unsuitable for herring by 2100. Although adaptive mechanisms may attenuate the effect in some species, the limited physiological tolerance of fish larvae will remain an important bottleneck for the persistence of marine fish populations in brackish waters undergoing climate-driven freshening.}, keywords = {Climate change Baltic Sea Salinity @@ -9015,7 +9059,7 @@ Modelling}, volume = {166}, number = {12}, pages = {158}, - abstract = {Warming is one of the most dramatic aspects of climate change and threatens future ecosystem functioning. It may alter primary productivity and thus jeopardize carbon sequestration, a crucial ecosystem service provided by coastal environments. Fucus vesiculosus is an important canopy-forming macroalga in the Baltic Sea, and its main consumer is Idotea balthica. The objective of this study is to understand how temperature impacts a simplified food web composed of macroalgae and herbivores to quantify the effect on organic carbon storage. The organisms were exposed to a temperature gradient from 5 to 25 °C. We measured and modeled primary production, respiration, growth and epiphytic load on the surface of Fucus and respiration, growth and egestion of Idotea. The results show that temperature affects physiological responses of Fucus and Idotea separately. However, Idotea proved more sensitive to increasing temperatures than the primary producers. The lag between the collapse of the grazer and the decline of Fucus and epiphytes above 20 °C allows an increase of carbon storage of the primary productivity at higher temperatures. Therefore, along the temperature gradient, the simplified food web stores carbon in a non-monotonic way (reaching minimum at 20 °C). Our work stresses the need of considering the combined metabolic performance of all organisms for sound predictions on carbon circulation in food webs.}, + abstract = {Warming is one of the most dramatic aspects of climate change and threatens future ecosystem functioning. It may alter primary productivity and thus jeopardize carbon sequestration, a crucial ecosystem service provided by coastal environments. Fucus vesiculosus is an important canopy-forming macroalga in the Baltic Sea, and its main consumer is Idotea balthica. The objective of this study is to understand how temperature impacts a simplified food web composed of macroalgae and herbivores to quantify the effect on organic carbon storage. The organisms were exposed to a temperature gradient from 5 to 25 °C. We measured and modeled primary production, respiration, growth and epiphytic load on the surface of Fucus and respiration, growth and egestion of Idotea. The results show that temperature affects physiological responses of Fucus and Idotea separately. However, Idotea proved more sensitive to increasing temperatures than the primary producers. The lag between the collapse of the grazer and the decline of Fucus and epiphytes above 20 °C allows an increase of carbon storage of the primary productivity at higher temperatures. Therefore, along the temperature gradient, the simplified food web stores carbon in a non-monotonic way (reaching minimum at 20 °C). Our work stresses the need of considering the combined metabolic performance of all organisms for sound predictions on carbon circulation in food webs.}, ISSN = {1432-1793}, DOI = {https://doi.org/10.1007/s00227-019-3596-z}, url = {https://doi.org/10.1007/s00227-019-3596-z}, @@ -9110,7 +9154,7 @@ Modelling}, volume = {131}, number = {1}, pages = {433-443}, - abstract = {The aim of the study was to analyse trends and regime shifts in time series of monthly, seasonal and annual precipitation in the eastern Baltic countries (Lithuania, Latvia, Estonia) during 1966–2015. Data from 54 stations with nearly homogeneous series were used. The Mann-Kendall test was used for trend analysis and the Rodionov test for the analysis of regime shifts. Rather few statistically significant trends (p < 0.05) and regime shifts were determined. The highest increase (by approximately 10 mm per decade) was observed in winter precipitation when a significant trend was found at the large majority of stations. For monthly precipitation, increasing trends were detected at many stations in January, February and June. Weak negative trends revealed at few stations in April and September. Annual precipitation has generally increased, but the trend is mostly insignificant. The analysis of regime shifts revealed some significant abrupt changes, the most important of which were upward shifts in winter, in January and February precipitation at many stations since 1990 or in some other years (1989, 1995). A return shift in the time series of February precipitation occurred since 2003. The most significant increase in precipitation was determined in Latvia and the weakest increase in Lithuania.}, + abstract = {The aim of the study was to analyse trends and regime shifts in time series of monthly, seasonal and annual precipitation in the eastern Baltic countries (Lithuania, Latvia, Estonia) during 1966–2015. Data from 54 stations with nearly homogeneous series were used. The Mann-Kendall test was used for trend analysis and the Rodionov test for the analysis of regime shifts. Rather few statistically significant trends (p < 0.05) and regime shifts were determined. The highest increase (by approximately 10 mm per decade) was observed in winter precipitation when a significant trend was found at the large majority of stations. For monthly precipitation, increasing trends were detected at many stations in January, February and June. Weak negative trends revealed at few stations in April and September. Annual precipitation has generally increased, but the trend is mostly insignificant. The analysis of regime shifts revealed some significant abrupt changes, the most important of which were upward shifts in winter, in January and February precipitation at many stations since 1990 or in some other years (1989, 1995). A return shift in the time series of February precipitation occurred since 2003. The most significant increase in precipitation was determined in Latvia and the weakest increase in Lithuania.}, ISSN = {1434-4483}, DOI = {https://doi.org/10.1007/s00704-016-1990-8}, url = {https://doi.org/10.1007/s00704-016-1990-8}, @@ -9604,7 +9648,7 @@ https://os.copernicus.org/articles/15/905/2019/os-15-905-2019.pdf}, volume = {63}, number = {6}, pages = {763-775}, - abstract = {Recent climate warming has altered plant phenology at northern European latitudes, but conclusions regarding the spatial patterns of phenological change and relationships with climate are still challenging as quantitative estimates are strongly diverging. To generate consistent estimates of broad-scale spatially continuous spring plant phenology at northern European latitudes (> 50° N) from 2000 to 2016, we used a novel vegetation index, the plant phenology index (PPI), derived from MODerate-resolution Imaging Spectroradiometer (MODIS) data. To obtain realistic and strong estimates, the phenology trends and their relationships with temperature and precipitation over the past 17 years were analyzed using a panel data method. We found that in the studied region the start of the growing season (SOS) has on average advanced by 0.30 day year−1. The SOS showed an overall advancement rate of 2.47 day °C−1 to spring warming, and 0.18 day cm−1 to decreasing precipitation in spring. The previous winter and summer temperature had important effects on the SOS but were spatially heterogeneous. Overall, the onset of SOS was delayed 0.66 day °C−1 by winter warming and 0.56 day °C−1 by preceding summer warming. The precipitation in winter and summer influenced the SOS in a relatively weak and complex manner. The findings indicate rapid recent phenological changes driven by combined seasonal climates in northern Europe. Previously unknown spatial patterns of phenological change and relationships with climate drivers are presented that improve our capacity to understand and foresee future climate effects on vegetation.}, + abstract = {Recent climate warming has altered plant phenology at northern European latitudes, but conclusions regarding the spatial patterns of phenological change and relationships with climate are still challenging as quantitative estimates are strongly diverging. To generate consistent estimates of broad-scale spatially continuous spring plant phenology at northern European latitudes (> 50° N) from 2000 to 2016, we used a novel vegetation index, the plant phenology index (PPI), derived from MODerate-resolution Imaging Spectroradiometer (MODIS) data. To obtain realistic and strong estimates, the phenology trends and their relationships with temperature and precipitation over the past 17 years were analyzed using a panel data method. We found that in the studied region the start of the growing season (SOS) has on average advanced by 0.30 day year−1. The SOS showed an overall advancement rate of 2.47 day °C−1 to spring warming, and 0.18 day cm−1 to decreasing precipitation in spring. The previous winter and summer temperature had important effects on the SOS but were spatially heterogeneous. Overall, the onset of SOS was delayed 0.66 day °C−1 by winter warming and 0.56 day °C−1 by preceding summer warming. The precipitation in winter and summer influenced the SOS in a relatively weak and complex manner. The findings indicate rapid recent phenological changes driven by combined seasonal climates in northern Europe. Previously unknown spatial patterns of phenological change and relationships with climate drivers are presented that improve our capacity to understand and foresee future climate effects on vegetation.}, ISSN = {1432-1254}, DOI = {https://doi.org/10.1007/s00484-019-01690-5}, url = {https://doi.org/10.1007/s00484-019-01690-5}, @@ -9788,7 +9832,7 @@ https://os.copernicus.org/articles/15/905/2019/os-15-905-2019.pdf}, volume = {24}, number = {7}, pages = {892-905}, - abstract = {Abstract Aim The Baltic Sea forms a unique regional sea with its salinity gradient ranging from marine to nearly freshwater conditions. It is one of the most environmentally impacted brackish seas worldwide, and the low biodiversity makes it particularly sensitive to anthropogenic pressures including climate change. We applied a novel combination of models to predict the fate of one of the dominant foundation species in the Baltic Sea, the bladder wrack Fucus vesiculosus. Location The Baltic Sea. Methods We used a species distribution model to predict climate change-induced displacement of F. vesiculosus and combined these projections with a biophysical model of dispersal and connectivity to explore whether the dispersal rate of locally adapted genotypes may match estimated climate velocities to recolonize the receding salinity gradient. In addition, we used a population dynamic model to assess possible effects of habitat fragmentation. Results The species distribution model showed that the habitat of F. vesiculosus is expected to dramatically shrink, mainly caused by the predicted reduction of salinity. In addition, the dispersal rate of locally adapted genotypes may not keep pace with estimated climate velocities rendering the recolonization of the receding salinity gradient more difficult. A simplistic model of population dynamics also indicated that the risk of local extinction may increase due to future habitat fragmentation. Main conclusions Results point to a significant risk of locally adapted genotypes being unable to shift their ranges sufficiently fast considering the restricted dispersal and long generation time. The worst scenario is that F. vesiculosus may disappear from large parts of the Baltic Sea before the end of this century with large effects on the biodiversity and ecosystem functioning. We finally discuss how to reduce this risk through conservation actions, including assisted colonization and assisted evolution.}, + abstract = {Abstract Aim The Baltic Sea forms a unique regional sea with its salinity gradient ranging from marine to nearly freshwater conditions. It is one of the most environmentally impacted brackish seas worldwide, and the low biodiversity makes it particularly sensitive to anthropogenic pressures including climate change. We applied a novel combination of models to predict the fate of one of the dominant foundation species in the Baltic Sea, the bladder wrack Fucus vesiculosus. Location The Baltic Sea. Methods We used a species distribution model to predict climate change-induced displacement of F. vesiculosus and combined these projections with a biophysical model of dispersal and connectivity to explore whether the dispersal rate of locally adapted genotypes may match estimated climate velocities to recolonize the receding salinity gradient. In addition, we used a population dynamic model to assess possible effects of habitat fragmentation. Results The species distribution model showed that the habitat of F. vesiculosus is expected to dramatically shrink, mainly caused by the predicted reduction of salinity. In addition, the dispersal rate of locally adapted genotypes may not keep pace with estimated climate velocities rendering the recolonization of the receding salinity gradient more difficult. A simplistic model of population dynamics also indicated that the risk of local extinction may increase due to future habitat fragmentation. Main conclusions Results point to a significant risk of locally adapted genotypes being unable to shift their ranges sufficiently fast considering the restricted dispersal and long generation time. The worst scenario is that F. vesiculosus may disappear from large parts of the Baltic Sea before the end of this century with large effects on the biodiversity and ecosystem functioning. We finally discuss how to reduce this risk through conservation actions, including assisted colonization and assisted evolution.}, ISSN = {1366-9516}, DOI = {https://doi.org/10.1111/ddi.12733}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/ddi.12733}, @@ -9970,7 +10014,7 @@ Environmental gradients}, volume = {9}, number = {15}, pages = {8587-8600}, - abstract = {Abstract Alternatives in ecosystem-based management often differ with respect to trade-offs between ecosystem values. Ecosystem or food-web models and demographic models are typically employed to evaluate alternatives, but the approaches are rarely integrated to uncover conflicts between values. We applied multistate models to a capture–recapture dataset on common guillemots Uria aalge breeding in the Baltic Sea to identify factors influencing survival. The estimated relationships were employed together with Ecopath-with-Ecosim food-web model simulations to project guillemot survival under six future scenarios incorporating climate change. The scenarios were based on management alternatives for eutrophication and cod fisheries, issues considered top priority for regional management, but without known direct effects on the guillemot population. Our demographic models identified prey quantity (abundance and biomass of sprat Sprattus sprattus) as the main factor influencing guillemot survival. Most scenarios resulted in projections of increased survival, in the near (2016–2040) and distant (2060–2085) future. However, in the scenario of reduced nutrient input and precautionary cod fishing, guillemot survival was projected to be lower in both future periods due to lower sprat stocks. Matrix population models suggested a substantial decline of the guillemot population in the near future, 24% per 10 years, and a smaller reduction, 1.1% per 10 years, in the distant future. To date, many stakeholders and Baltic Sea governments have supported reduced nutrient input and precautionary cod fishing and implementation is underway. Negative effects on nonfocal species have previously not been uncovered, but our results show that the scenario is likely to negatively impact the guillemot population. Linking model results allowed identifying trade-offs associated with management alternatives. This information is critical to thorough evaluation by decision-makers, but not easily obtained by food-web models or demographic models in isolation. Appropriate datasets are often available, making it feasible to apply a linked approach for better-informed decisions in ecosystem-based management.}, + abstract = {Abstract Alternatives in ecosystem-based management often differ with respect to trade-offs between ecosystem values. Ecosystem or food-web models and demographic models are typically employed to evaluate alternatives, but the approaches are rarely integrated to uncover conflicts between values. We applied multistate models to a capture–recapture dataset on common guillemots Uria aalge breeding in the Baltic Sea to identify factors influencing survival. The estimated relationships were employed together with Ecopath-with-Ecosim food-web model simulations to project guillemot survival under six future scenarios incorporating climate change. The scenarios were based on management alternatives for eutrophication and cod fisheries, issues considered top priority for regional management, but without known direct effects on the guillemot population. Our demographic models identified prey quantity (abundance and biomass of sprat Sprattus sprattus) as the main factor influencing guillemot survival. Most scenarios resulted in projections of increased survival, in the near (2016–2040) and distant (2060–2085) future. However, in the scenario of reduced nutrient input and precautionary cod fishing, guillemot survival was projected to be lower in both future periods due to lower sprat stocks. Matrix population models suggested a substantial decline of the guillemot population in the near future, 24% per 10 years, and a smaller reduction, 1.1% per 10 years, in the distant future. To date, many stakeholders and Baltic Sea governments have supported reduced nutrient input and precautionary cod fishing and implementation is underway. Negative effects on nonfocal species have previously not been uncovered, but our results show that the scenario is likely to negatively impact the guillemot population. Linking model results allowed identifying trade-offs associated with management alternatives. This information is critical to thorough evaluation by decision-makers, but not easily obtained by food-web models or demographic models in isolation. Appropriate datasets are often available, making it feasible to apply a linked approach for better-informed decisions in ecosystem-based management.}, ISSN = {2045-7758}, DOI = {https://doi.org/10.1002/ece3.5385}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.5385}, @@ -10093,7 +10137,7 @@ Survival}, volume = {35}, number = {3}, pages = {683-691}, - abstract = {Abstract The sea growth of two whitefish forms, anadromous (Coregonus lavaretus lavaretus) and sea-spawning (Coregonus lavaretus widegreni), was analysed using samples collected from the commercial sea catch in the Gulf of Bothnia (GoB) in the northern Baltic Sea during 1998–2014. In the GoB area, these two forms are possible to identify because the gill-raker number and size at maturity vary between forms. The growth rate of the forms is linked to their feeding area. Sea-spawning whitefish, which has a feeding migration near its home site, was shorter in the northern GoB (66°N–64°N) at the ages of 3–11 than those in the southern GoB (64°N–60°30′N). In the data, most whitefish were caught with gill nets in the GoB. The mesh sizes of gill nets capturing the anadromous form were mostly 35–45 mm, while those capturing the sea-spawning form were <35 mm in the northern GoB. It is likely that the different growth trends for small and large whitefish were connected with differences in their recruitment for fishing. The length of anadromous females at the age of four sea years increased significantly, but the length of six-year-old anadromous female whitefish decreased over the catch years from 1998–2014. In contrast, the length of slow-growing sea-spawning whitefish of six years or older increased significantly in relation to the catch year in the gill-net catch. The increase in the growth of young age groups in both forms was probably associated with the increasing temperature and the low fishing pressure on small fish. The decreasing age at capture for both forms and the depression of the mean size of old anadromous whitefish are signs of high fishing pressure with a high gill-net effort that selectively removes the largest and oldest individuals of both forms.}, + abstract = {Abstract The sea growth of two whitefish forms, anadromous (Coregonus lavaretus lavaretus) and sea-spawning (Coregonus lavaretus widegreni), was analysed using samples collected from the commercial sea catch in the Gulf of Bothnia (GoB) in the northern Baltic Sea during 1998–2014. In the GoB area, these two forms are possible to identify because the gill-raker number and size at maturity vary between forms. The growth rate of the forms is linked to their feeding area. Sea-spawning whitefish, which has a feeding migration near its home site, was shorter in the northern GoB (66°N–64°N) at the ages of 3–11 than those in the southern GoB (64°N–60°30′N). In the data, most whitefish were caught with gill nets in the GoB. The mesh sizes of gill nets capturing the anadromous form were mostly 35–45 mm, while those capturing the sea-spawning form were <35 mm in the northern GoB. It is likely that the different growth trends for small and large whitefish were connected with differences in their recruitment for fishing. The length of anadromous females at the age of four sea years increased significantly, but the length of six-year-old anadromous female whitefish decreased over the catch years from 1998–2014. In contrast, the length of slow-growing sea-spawning whitefish of six years or older increased significantly in relation to the catch year in the gill-net catch. The increase in the growth of young age groups in both forms was probably associated with the increasing temperature and the low fishing pressure on small fish. The decreasing age at capture for both forms and the depression of the mean size of old anadromous whitefish are signs of high fishing pressure with a high gill-net effort that selectively removes the largest and oldest individuals of both forms.}, ISSN = {0175-8659}, DOI = {https://doi.org/10.1111/jai.13898}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/jai.13898}, @@ -10350,7 +10394,7 @@ https://www.earth-syst-dynam.net/8/1031/2017/esd-8-1031-2017.pdf}, volume = {65}, number = {1}, pages = {117-126}, - abstract = {Environmental conditions of mammalian juveniles may have delayed effects on their life histories and fitness, such as body size or reproductive rate later in their lives. In the present study, we tested this hypothesis on Baltic grey seals (Halichoerus grypus) and examined (1) the possible effects of prey fish quality and winter temperature on body condition of grey seal pups of both sexes and (2) the possible delayed impacts of pup environment on the body size and birth rate of adult grey seals. Body condition (blubber thickness) of especially female pups in April–May correlated negatively with winter temperatures, and body condition of male pups correlated positively with prey fish quality (herring Clupea harengus and sprat Sprattus sprattus weight). Males reached the asymptotic length at the age of 10.3 years, and body length of adult males (≥ 10 years old) was positively related to herring and sprat weight in their birth year. Females reached the asymptotic length at the age of 5.9 years. Birth rate of females (age 7–24 years) was negatively related to winter temperature in their birth year. We conclude that both changes in prey fish quality and climate may affect body condition of pups and thus also cause delayed effects on adult fitness: body size and reproductive rate of Baltic grey seals.}, + abstract = {Environmental conditions of mammalian juveniles may have delayed effects on their life histories and fitness, such as body size or reproductive rate later in their lives. In the present study, we tested this hypothesis on Baltic grey seals (Halichoerus grypus) and examined (1) the possible effects of prey fish quality and winter temperature on body condition of grey seal pups of both sexes and (2) the possible delayed impacts of pup environment on the body size and birth rate of adult grey seals. Body condition (blubber thickness) of especially female pups in April–May correlated negatively with winter temperatures, and body condition of male pups correlated positively with prey fish quality (herring Clupea harengus and sprat Sprattus sprattus weight). Males reached the asymptotic length at the age of 10.3 years, and body length of adult males (≥ 10 years old) was positively related to herring and sprat weight in their birth year. Females reached the asymptotic length at the age of 5.9 years. Birth rate of females (age 7–24 years) was negatively related to winter temperature in their birth year. We conclude that both changes in prey fish quality and climate may affect body condition of pups and thus also cause delayed effects on adult fitness: body size and reproductive rate of Baltic grey seals.}, ISSN = {2199-241X}, DOI = {https://doi.org/10.1007/s13364-019-00454-1}, url = {https://doi.org/10.1007/s13364-019-00454-1}, @@ -10690,7 +10734,7 @@ CORDEX}, volume = {124}, number = {6}, pages = {4168-4187}, - abstract = {Abstract The Baltic Sea is highly impacted by global warming and other anthropogenic changes and is one of the fastest-warming marginal seas in the world. To detect trends in water temperature and to attribute them to atmospheric parameters, the results of two different ocean circulation models driven by reconstructed atmospheric forcing fields for the period 1850–2008 were analyzed. The model simulations were analyzed at temporal and spatial scales from seasonal to centennial and from intrabasin to basin, respectively. The strongest 150-year trends were found in the annual mean bottom temperature of the Bornholm Deep (0.15 K/decade) and in summer mean sea surface temperature (SST) in Bothnian Bay (0.09–0.12 K/decade). A comparison of the time periods 1856–2005 and 1978–2007 revealed that the SST trends strengthened tenfold. An attribution analysis showed that most of the SST variability could be explained by the surface air temperature (i.e., sensible heat flux) and the latent heat flux. Wind parallel to the coast and cloudiness additionally explained SST variability in the coastal zone affected by the variations in upwelling and in offshore areas affected by the variations in solar radiation, respectively. In contrast, the high variability in stratification caused by freshwater and saltwater inflows does not impact the long-term variability in the SST averaged over the Baltic Sea. The strongest SST trends since the 1980s can be explained by the superposition of global warming and a shift from the cold to the warm phase of the Atlantic Multidecadal Oscillation.}, + abstract = {Abstract The Baltic Sea is highly impacted by global warming and other anthropogenic changes and is one of the fastest-warming marginal seas in the world. To detect trends in water temperature and to attribute them to atmospheric parameters, the results of two different ocean circulation models driven by reconstructed atmospheric forcing fields for the period 1850–2008 were analyzed. The model simulations were analyzed at temporal and spatial scales from seasonal to centennial and from intrabasin to basin, respectively. The strongest 150-year trends were found in the annual mean bottom temperature of the Bornholm Deep (0.15 K/decade) and in summer mean sea surface temperature (SST) in Bothnian Bay (0.09–0.12 K/decade). A comparison of the time periods 1856–2005 and 1978–2007 revealed that the SST trends strengthened tenfold. An attribution analysis showed that most of the SST variability could be explained by the surface air temperature (i.e., sensible heat flux) and the latent heat flux. Wind parallel to the coast and cloudiness additionally explained SST variability in the coastal zone affected by the variations in upwelling and in offshore areas affected by the variations in solar radiation, respectively. In contrast, the high variability in stratification caused by freshwater and saltwater inflows does not impact the long-term variability in the SST averaged over the Baltic Sea. The strongest SST trends since the 1980s can be explained by the superposition of global warming and a shift from the cold to the warm phase of the Atlantic Multidecadal Oscillation.}, ISSN = {2169-9275}, DOI = {https://doi.org/10.1029/2018jc013948}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JC013948}, @@ -10705,7 +10749,7 @@ CORDEX}, volume = {46}, number = {16}, pages = {9739-9747}, - abstract = {Abstract Climate change is expected to enhance the hydrological cycle in northern latitudes reducing the salinity in the Baltic Sea, a land-locked marginal sea with a large catchment area located in northern Europe. With the help of ocean simulations forced by historical atmospheric and hydrological reconstructions and local observations, we analyzed long-term changes in the sea surface salinity of the Baltic Sea as well as its latitudinal gradient. The variability of both is dominated by multidecadal oscillations with a period of about 30 years, while both atmospheric variables, wind and river runoff, contribute to this variability. Centennial changes show a statistically significant positive trend in the North-South gradient of sea surface salinity for 1900–2008. This change is mainly attributed to increased river runoff from the northernmost catchment indicating a footprint of the anthropogenic impact on salinity with consequences for the marine ecosystem and species distributions.}, + abstract = {Abstract Climate change is expected to enhance the hydrological cycle in northern latitudes reducing the salinity in the Baltic Sea, a land-locked marginal sea with a large catchment area located in northern Europe. With the help of ocean simulations forced by historical atmospheric and hydrological reconstructions and local observations, we analyzed long-term changes in the sea surface salinity of the Baltic Sea as well as its latitudinal gradient. The variability of both is dominated by multidecadal oscillations with a period of about 30 years, while both atmospheric variables, wind and river runoff, contribute to this variability. Centennial changes show a statistically significant positive trend in the North-South gradient of sea surface salinity for 1900–2008. This change is mainly attributed to increased river runoff from the northernmost catchment indicating a footprint of the anthropogenic impact on salinity with consequences for the marine ecosystem and species distributions.}, ISSN = {0094-8276}, DOI = {https://doi.org/10.1029/2019GL083902}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL083902}, @@ -10951,7 +10995,7 @@ ECOLOGIA}, volume = {43}, number = {1}, pages = {60-68}, - abstract = {Integrated sediment multiproxy studies and modeling were used to reconstruct past changes in the Baltic Sea ecosystem. Results of natural changes over the past 6000 years in the Baltic Sea ecosystem suggest that forecasted climate warming might enhance environmental problems of the Baltic Sea. Integrated modeling and sediment proxy studies reveal increased sea surface temperatures and expanded seafloor anoxia (in deep basins) during earlier natural warm climate phases, such as the Medieval Climate Anomaly. Under future IPCC scenarios of global warming, there is likely no improvement of bottom water conditions in the Baltic Sea. Thus, the measures already designed to produce a healthier Baltic Sea are insufficient in the long term. The interactions between climate change and anthropogenic impacts on the Baltic Sea should be considered in management, implementation of policy strategies in the Baltic Sea environmental issues, and adaptation to future climate change.}, + abstract = {Integrated sediment multiproxy studies and modeling were used to reconstruct past changes in the Baltic Sea ecosystem. Results of natural changes over the past 6000 years in the Baltic Sea ecosystem suggest that forecasted climate warming might enhance environmental problems of the Baltic Sea. Integrated modeling and sediment proxy studies reveal increased sea surface temperatures and expanded seafloor anoxia (in deep basins) during earlier natural warm climate phases, such as the Medieval Climate Anomaly. Under future IPCC scenarios of global warming, there is likely no improvement of bottom water conditions in the Baltic Sea. Thus, the measures already designed to produce a healthier Baltic Sea are insufficient in the long term. The interactions between climate change and anthropogenic impacts on the Baltic Sea should be considered in management, implementation of policy strategies in the Baltic Sea environmental issues, and adaptation to future climate change.}, ISSN = {1654-7209}, DOI = {https://doi.org/10.1007/s13280-013-0477-4}, url = {https://doi.org/10.1007/s13280-013-0477-4}, @@ -11074,7 +11118,7 @@ long-term changes}, volume = {27}, number = {3}, pages = {563-575}, - abstract = {Abstract Global losses over the 20th century placed seagrass ecosystems among the most threatened ecosystems in the world, with eutrophication, and associated deterioration of the submarine light environment identified as the main driver. Growing appreciation of the ecological and societal benefits of healthy seagrass meadows has stimulated efforts to protect and restore them, largely focused on reducing nutrient input to coastal waters. Here we analyze a unique data set spanning 135 years on eelgrass (Zostera marina), the dominant seagrass of the northern hemisphere. We show that meadows in the Western Baltic Sea exhibited major declines relative to historic (1890–1910) reference due to the wasting disease in the 1930s followed by eutrophication peaking in the 1980s, but have only shown modest improvement despite major eutrophication mitigation, halving nitrogen input since the 1980s. Across the past century, we identified generally shallower colonization depths of eelgrass for a given submarine light penetration and, hence, increased apparent light requirements. This suggests that eelgrass recovery is limited by additional stressors. Our study indicates that bottom trawling and intense recent warming (0.5°C per decade, 1985–2018), which impact on deeper and shallower meadows, respectively, suppress eelgrass from fully recovering from eutrophication. Warming is most severe in shallow turbid waters, while clear-water areas offer eelgrass refugia from warming in deeper, cooler waters; but trawling can prevent eelgrass from reaching these refugia. Efforts to reduce nutrient input and thereby improve water clarity have been instrumental in avoiding a catastrophic loss of eelgrass ecosystems. However, local-scale future management must, in addition, reduce bottom trawling to facilitate eelgrass reaching deeper, cooler refugia, and increase resilience toward realized and further warming. Warming needs to be limited by meeting global climate change mitigation goals.}, + abstract = {Abstract Global losses over the 20th century placed seagrass ecosystems among the most threatened ecosystems in the world, with eutrophication, and associated deterioration of the submarine light environment identified as the main driver. Growing appreciation of the ecological and societal benefits of healthy seagrass meadows has stimulated efforts to protect and restore them, largely focused on reducing nutrient input to coastal waters. Here we analyze a unique data set spanning 135 years on eelgrass (Zostera marina), the dominant seagrass of the northern hemisphere. We show that meadows in the Western Baltic Sea exhibited major declines relative to historic (1890–1910) reference due to the wasting disease in the 1930s followed by eutrophication peaking in the 1980s, but have only shown modest improvement despite major eutrophication mitigation, halving nitrogen input since the 1980s. Across the past century, we identified generally shallower colonization depths of eelgrass for a given submarine light penetration and, hence, increased apparent light requirements. This suggests that eelgrass recovery is limited by additional stressors. Our study indicates that bottom trawling and intense recent warming (0.5°C per decade, 1985–2018), which impact on deeper and shallower meadows, respectively, suppress eelgrass from fully recovering from eutrophication. Warming is most severe in shallow turbid waters, while clear-water areas offer eelgrass refugia from warming in deeper, cooler waters; but trawling can prevent eelgrass from reaching these refugia. Efforts to reduce nutrient input and thereby improve water clarity have been instrumental in avoiding a catastrophic loss of eelgrass ecosystems. However, local-scale future management must, in addition, reduce bottom trawling to facilitate eelgrass reaching deeper, cooler refugia, and increase resilience toward realized and further warming. Warming needs to be limited by meeting global climate change mitigation goals.}, ISSN = {1354-1013}, DOI = {https://doi.org/10.1111/gcb.15440}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.15440}, @@ -11561,7 +11605,7 @@ transfer functions}, @article{Laakso2018, author = {Laakso, L. and Mikkonen, S. and Drebs, A. and Karjalainen, A. and Pirinen, P. and Alenius, P.}, - title = {100 years of atmospheric and marine observations at the Finnish Utö Island in the Baltic Sea}, + title = {100 years of atmospheric and marine observations at the Finnish Utö Island in the Baltic Sea}, journal = {Ocean Science}, volume = {14}, number = {4}, @@ -11872,7 +11916,7 @@ Prymnesiales}, @article{Laskar2004, author = {Laskar, J. and Robutel, P. and Joutel, F. and Gastineau, M. and Correia, A. C. M. and Levrard, B.}, - title = {A long-term numerical solution for the insolation quantities of the Earth}, + title = {A long-term numerical solution for the insolation quantities of the Earth}, journal = {Astronomy & Astrophysics}, volume = {428}, number = {1}, @@ -12084,7 +12128,7 @@ Routine metabolism}, volume = {19}, number = {7}, pages = {2071-2081}, - abstract = {Abstract Climate change is predicted to cause changes in species distributions and several studies report margin range shifts in some species. However, the reported changes rarely concern a species' entire distribution and are not always linked to climate change. Here, we demonstrate strong north-eastwards shifts in the centres of gravity of the entire wintering range of three common waterbird species along the North-West Europe flyway during the past three decades. These shifts correlate with an increase of 3.8 °C in early winter temperature in the north-eastern part of the wintering areas, where bird abundance increased exponentially, corresponding with decreases in abundance at the south-western margin of the wintering ranges. This confirms the need to re-evaluate conservation site safeguard networks and associated biodiversity monitoring along the flyway, as new important wintering areas are established further north and east, and highlights the general urgency of conservation planning in a changing world. Range shifts in wintering waterbirds may also affect hunting pressure, which may alter bag sizes and lead to population-level consequences.}, + abstract = {Abstract Climate change is predicted to cause changes in species distributions and several studies report margin range shifts in some species. However, the reported changes rarely concern a species' entire distribution and are not always linked to climate change. Here, we demonstrate strong north-eastwards shifts in the centres of gravity of the entire wintering range of three common waterbird species along the North-West Europe flyway during the past three decades. These shifts correlate with an increase of 3.8 °C in early winter temperature in the north-eastern part of the wintering areas, where bird abundance increased exponentially, corresponding with decreases in abundance at the south-western margin of the wintering ranges. This confirms the need to re-evaluate conservation site safeguard networks and associated biodiversity monitoring along the flyway, as new important wintering areas are established further north and east, and highlights the general urgency of conservation planning in a changing world. Range shifts in wintering waterbirds may also affect hunting pressure, which may alter bag sizes and lead to population-level consequences.}, ISSN = {1354-1013}, DOI = {https://doi.org/10.1111/gcb.12200}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.12200}, @@ -13000,7 +13044,7 @@ Wind}, volume = {562}, number = {7726}, pages = {259-262}, - abstract = {The Paris Agreement promotes forest management as a pathway towards halting climate warming through the reduction of carbon dioxide (CO2) emissions1. However, the climate benefits from carbon sequestration through forest management may be reinforced, counteracted or even offset by concurrent management-induced changes in surface albedo, land-surface roughness, emissions of biogenic volatile organic compounds, transpiration and sensible heat flux2–4. Consequently, forest management could offset CO2 emissions without halting global temperature rise. It therefore remains to be confirmed whether commonly proposed sustainable European forest-management portfolios would comply with the Paris Agreement—that is, whether they can reduce the growth rate of atmospheric CO2, reduce the radiative imbalance at the top of the atmosphere, and neither increase the near-surface air temperature nor decrease precipitation by the end of the twenty-first century. Here we show that the portfolio made up of management systems that locally maximize the carbon sink through carbon sequestration, wood use and product and energy substitution reduces the growth rate of atmospheric CO2, but does not meet any of the other criteria. The portfolios that maximize the carbon sink or forest albedo pass only one—different in each case—criterion. Managing the European forests with the objective of reducing near-surface air temperature, on the other hand, will also reduce the atmospheric CO2 growth rate, thus meeting two of the four criteria. Trade-off are thus unavoidable when using European forests to meet climate objectives. Furthermore, our results demonstrate that if present-day forest cover is sustained, the additional climate benefits achieved through forest management would be modest and local, rather than global. On the basis of these findings, we argue that Europe should not rely on forest management to mitigate climate change. The modest climate effects from changes in forest management imply, however, that if adaptation to future climate were to require large-scale changes in species composition and silvicultural systems over Europe5,6, the forests could be adapted to climate change with neither positive nor negative  climate effects.}, + abstract = {The Paris Agreement promotes forest management as a pathway towards halting climate warming through the reduction of carbon dioxide (CO2) emissions1. However, the climate benefits from carbon sequestration through forest management may be reinforced, counteracted or even offset by concurrent management-induced changes in surface albedo, land-surface roughness, emissions of biogenic volatile organic compounds, transpiration and sensible heat flux2–4. Consequently, forest management could offset CO2 emissions without halting global temperature rise. It therefore remains to be confirmed whether commonly proposed sustainable European forest-management portfolios would comply with the Paris Agreement—that is, whether they can reduce the growth rate of atmospheric CO2, reduce the radiative imbalance at the top of the atmosphere, and neither increase the near-surface air temperature nor decrease precipitation by the end of the twenty-first century. Here we show that the portfolio made up of management systems that locally maximize the carbon sink through carbon sequestration, wood use and product and energy substitution reduces the growth rate of atmospheric CO2, but does not meet any of the other criteria. The portfolios that maximize the carbon sink or forest albedo pass only one—different in each case—criterion. Managing the European forests with the objective of reducing near-surface air temperature, on the other hand, will also reduce the atmospheric CO2 growth rate, thus meeting two of the four criteria. Trade-off are thus unavoidable when using European forests to meet climate objectives. Furthermore, our results demonstrate that if present-day forest cover is sustained, the additional climate benefits achieved through forest management would be modest and local, rather than global. On the basis of these findings, we argue that Europe should not rely on forest management to mitigate climate change. The modest climate effects from changes in forest management imply, however, that if adaptation to future climate were to require large-scale changes in species composition and silvicultural systems over Europe5,6, the forests could be adapted to climate change with neither positive nor negative climate effects.}, ISSN = {1476-4687}, DOI = {https://doi.org/10.1038/s41586-018-0577-1}, url = {https://doi.org/10.1038/s41586-018-0577-1}, @@ -13103,7 +13147,7 @@ deformation in the Baltic Sea (1962-2007), J. Geophys. Res. Oceans, 118, volume = {11}, number = {1}, pages = {1232}, - abstract = {Water temperature is critical for the ecology of lakes. However, the ability to predict its spatial and seasonal variation is constrained by the lack of a thermal classification system. Here we define lake thermal regions using objective analysis of seasonal surface temperature dynamics from satellite observations. Nine lake thermal regions are identified that mapped robustly and largely contiguously globally, even for small lakes. The regions differed from other global patterns, and so provide unique information. Using a lake model forced by 21st century climate projections, we found that 12%, 27% and 66% of lakes will change to a lower latitude thermal region by 2080–2099 for low, medium and high greenhouse gas concentration trajectories (Representative Concentration Pathways 2.6, 6.0 and 8.5) respectively. Under the worst-case scenario, a 79% reduction in the number of lakes in the northernmost thermal region is projected. This thermal region framework can facilitate the global scaling of lake-research.}, + abstract = {Water temperature is critical for the ecology of lakes. However, the ability to predict its spatial and seasonal variation is constrained by the lack of a thermal classification system. Here we define lake thermal regions using objective analysis of seasonal surface temperature dynamics from satellite observations. Nine lake thermal regions are identified that mapped robustly and largely contiguously globally, even for small lakes. The regions differed from other global patterns, and so provide unique information. Using a lake model forced by 21st century climate projections, we found that 12%, 27% and 66% of lakes will change to a lower latitude thermal region by 2080–2099 for low, medium and high greenhouse gas concentration trajectories (Representative Concentration Pathways 2.6, 6.0 and 8.5) respectively. Under the worst-case scenario, a 79% reduction in the number of lakes in the northernmost thermal region is projected. This thermal region framework can facilitate the global scaling of lake-research.}, ISSN = {2041-1723}, DOI = {https://doi.org/10.1038/s41467-020-15108-z}, url = {https://doi.org/10.1038/s41467-020-15108-z}, @@ -13180,7 +13224,7 @@ deformation in the Baltic Sea (1962-2007), J. Geophys. Res. Oceans, 118, volume = {41}, number = {6}, pages = {626-636}, - abstract = {Understanding how climate change, exploitation and eutrophication will affect populations and ecosystems of the Baltic Sea can be facilitated with models which realistically combine these forcings into common frameworks. Here, we evaluate sensitivity of fish recruitment and population dynamics to past and future environmental forcings provided by three ocean-biogeochemical models of the Baltic Sea. Modeled temperature explained nearly as much variability in reproductive success of sprat (Sprattus sprattus; Clupeidae) as measured temperatures during 1973–2005, and both the spawner biomass and the temperature have influenced recruitment for at least 50 years. The three Baltic Sea models estimate relatively similar developments (increases) in biomass and fishery yield during twenty-first century climate change (ca. 28 % range among models). However, this uncertainty is exceeded by the one associated with the fish population model, and by the source of global climate data used by regional models. Knowledge of processes and biases could reduce these uncertainties.}, + abstract = {Understanding how climate change, exploitation and eutrophication will affect populations and ecosystems of the Baltic Sea can be facilitated with models which realistically combine these forcings into common frameworks. Here, we evaluate sensitivity of fish recruitment and population dynamics to past and future environmental forcings provided by three ocean-biogeochemical models of the Baltic Sea. Modeled temperature explained nearly as much variability in reproductive success of sprat (Sprattus sprattus; Clupeidae) as measured temperatures during 1973–2005, and both the spawner biomass and the temperature have influenced recruitment for at least 50 years. The three Baltic Sea models estimate relatively similar developments (increases) in biomass and fishery yield during twenty-first century climate change (ca. 28 % range among models). However, this uncertainty is exceeded by the one associated with the fish population model, and by the source of global climate data used by regional models. Knowledge of processes and biases could reduce these uncertainties.}, ISSN = {1654-7209}, DOI = {https://doi.org/10.1007/s13280-012-0325-y}, url = {https://doi.org/10.1007/s13280-012-0325-y}, @@ -13609,7 +13653,7 @@ Baltic Sea}, journal = {Quaternary Science Reviews}, volume = {112}, pages = {109-127}, - abstract = {We present a new gridded climate reconstruction for Europe for the last 12,000 years based on pollen data. The reconstruction is an update of Davis et al. (2003) using the same methodology, but with a greatly expanded fossil and surface-sample dataset and more rigorous quality-control. The modern pollen dataset has been increased by more than 80%, and the fossil pollen dataset by more than 50%, representing almost 60,000 individual pollen samples. The climate parameters reconstructed include summer/winter and annual temperatures and precipitation, as well as a measure of moisture balance, and growing degree-days above 5 °C. Confidence limits were established for the reconstruction based on transfer function and interpolation uncertainties. The reconstruction takes account of post-glacial isostatic readjustment which resulted in a potential warming bias of up to +1–2 °C for parts of Fennoscandia in the early Holocene, as well as changes in palaeogeography resulting from decaying ice sheets and rising post-glacial sea-levels. This new dataset has been evaluated against previously published independent quantitative climate reconstructions from a variety of archives on a site-by-site basis across Europe. The results of this comparison are generally very good; only chironomid-based reconstructions showed substantial differences with our values. Our reconstruction is available for download as gridded maps throughout the Holocene on a 1000-year time-step. The gridded format makes our reconstructions suitable for comparison with climate model output and for other applications such as vegetation and land-use modelling. Our new climate reconstruction suggests that warming in Europe during the mid-Holocene was greater in winter than in summer, an apparent paradox that is not consistent with current climate model simulations and traditional interpretations of Milankovitch theory.}, + abstract = {We present a new gridded climate reconstruction for Europe for the last 12,000 years based on pollen data. The reconstruction is an update of Davis et al. (2003) using the same methodology, but with a greatly expanded fossil and surface-sample dataset and more rigorous quality-control. The modern pollen dataset has been increased by more than 80%, and the fossil pollen dataset by more than 50%, representing almost 60,000 individual pollen samples. The climate parameters reconstructed include summer/winter and annual temperatures and precipitation, as well as a measure of moisture balance, and growing degree-days above 5 °C. Confidence limits were established for the reconstruction based on transfer function and interpolation uncertainties. The reconstruction takes account of post-glacial isostatic readjustment which resulted in a potential warming bias of up to +1–2 °C for parts of Fennoscandia in the early Holocene, as well as changes in palaeogeography resulting from decaying ice sheets and rising post-glacial sea-levels. This new dataset has been evaluated against previously published independent quantitative climate reconstructions from a variety of archives on a site-by-site basis across Europe. The results of this comparison are generally very good; only chironomid-based reconstructions showed substantial differences with our values. Our reconstruction is available for download as gridded maps throughout the Holocene on a 1000-year time-step. The gridded format makes our reconstructions suitable for comparison with climate model output and for other applications such as vegetation and land-use modelling. Our new climate reconstruction suggests that warming in Europe during the mid-Holocene was greater in winter than in summer, an apparent paradox that is not consistent with current climate model simulations and traditional interpretations of Milankovitch theory.}, keywords = {Pollen-climate Multi-proxy comparison Gridded reconstruction @@ -13666,7 +13710,7 @@ Europe}, publisher = {Springer International Publishing}, address = {Cham}, pages = {149-173}, - abstract = {Several aspects describing the state of the atmosphere in the North Sea region are considered in this chapter. These include large-scale circulation, means and extremes in temperature and precipitation, cyclones and winds, and radiation and clouds. The climate projections reveal several pronounced future changes in the state of the atmosphere in the North Sea region, both in the free atmosphere and near the surface: amplification and an eastward shift in the pattern of NAO variability in autumn and winter; changes in the storm track with increased cyclone density over western Europe in winter and reduced cyclone density on the southern flank in summer; more frequent strong winds from westerly directions and less frequent strong winds from south-easterly directions; marked mean warming of 1.7–3.2 °C for different scenarios, with stronger warming in winter than in summer and a relatively strong warming over southern Norway; more intense extremes in daily maximum temperature and reduced extremes in daily minimum temperature, both in strength and frequency; an increase in mean precipitation during the cold season and a reduction during the warm season; a pronounced increase in the intensity of heavy daily precipitation events, particularly in winter; a considerable increase in the intensity of extreme hourly precipitation in summer; an increase (decrease) in cloud cover in the northern (southern) part of the North Sea region, resulting in a decrease (increase) in net solar radiation at the surface.}, + abstract = {Several aspects describing the state of the atmosphere in the North Sea region are considered in this chapter. These include large-scale circulation, means and extremes in temperature and precipitation, cyclones and winds, and radiation and clouds. The climate projections reveal several pronounced future changes in the state of the atmosphere in the North Sea region, both in the free atmosphere and near the surface: amplification and an eastward shift in the pattern of NAO variability in autumn and winter; changes in the storm track with increased cyclone density over western Europe in winter and reduced cyclone density on the southern flank in summer; more frequent strong winds from westerly directions and less frequent strong winds from south-easterly directions; marked mean warming of 1.7–3.2 °C for different scenarios, with stronger warming in winter than in summer and a relatively strong warming over southern Norway; more intense extremes in daily maximum temperature and reduced extremes in daily minimum temperature, both in strength and frequency; an increase in mean precipitation during the cold season and a reduction during the warm season; a pronounced increase in the intensity of heavy daily precipitation events, particularly in winter; a considerable increase in the intensity of extreme hourly precipitation in summer; an increase (decrease) in cloud cover in the northern (southern) part of the North Sea region, resulting in a decrease (increase) in net solar radiation at the surface.}, ISBN = {978-3-319-39745-0}, DOI = {10.1007/978-3-319-39745-0_5}, url = {https://doi.org/10.1007/978-3-319-39745-0_5}, @@ -13695,7 +13739,7 @@ Europe}, volume = {32}, number = {7}, pages = {1107-1122}, - abstract = {Abstract There is growing evidence that the release of phosphorus (P) from “legacy” stores can frustrate efforts to reduce P loading to surface water from sources such as agriculture and human sewage. Less is known, however, about the magnitude and residence times of these legacy pools. Here we constructed a budget of net anthropogenic P inputs to the Baltic Sea drainage basin and developed a three-parameter, two-box model to describe the movement of anthropogenic P though temporary (mobile) and long-term (stable) storage pools. Phosphorus entered the sea as direct coastal effluent discharge and via rapid transport and slow, legacy pathways. The model reproduced past waterborne P loads and suggested an ~30-year residence time in the mobile pool. Between 1900 and 2013, 17 and 27 Mt P has accumulated in the mobile and stable pools, respectively. Phosphorus inputs to the sea have halved since the 1980s due to improvements in coastal sewage treatment and reductions associated with the rapid transport pathway. After decades of accumulation, the system appears to have shifted to a depletion phase; absent further reductions in net anthropogenic P input, future waterborne loads could decrease. Presently, losses from the mobile pool contribute nearly half of P loads, suggesting that it will be difficult to achieve substantial near-term reductions. However, there is still potential to make progress toward eutrophication management goals by addressing rapid transport pathways, such as overland flow, as well as mobile stores, such as cropland with large soil-P reserves.}, + abstract = {Abstract There is growing evidence that the release of phosphorus (P) from “legacy” stores can frustrate efforts to reduce P loading to surface water from sources such as agriculture and human sewage. Less is known, however, about the magnitude and residence times of these legacy pools. Here we constructed a budget of net anthropogenic P inputs to the Baltic Sea drainage basin and developed a three-parameter, two-box model to describe the movement of anthropogenic P though temporary (mobile) and long-term (stable) storage pools. Phosphorus entered the sea as direct coastal effluent discharge and via rapid transport and slow, legacy pathways. The model reproduced past waterborne P loads and suggested an ~30-year residence time in the mobile pool. Between 1900 and 2013, 17 and 27 Mt P has accumulated in the mobile and stable pools, respectively. Phosphorus inputs to the sea have halved since the 1980s due to improvements in coastal sewage treatment and reductions associated with the rapid transport pathway. After decades of accumulation, the system appears to have shifted to a depletion phase; absent further reductions in net anthropogenic P input, future waterborne loads could decrease. Presently, losses from the mobile pool contribute nearly half of P loads, suggesting that it will be difficult to achieve substantial near-term reductions. However, there is still potential to make progress toward eutrophication management goals by addressing rapid transport pathways, such as overland flow, as well as mobile stores, such as cropland with large soil-P reserves.}, ISSN = {0886-6236}, DOI = {https://doi.org/10.1029/2018GB005914}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GB005914}, @@ -13847,7 +13891,7 @@ Europe}, @article{Meier2022, author = {Meier, H. E. M. and Dieterich, C. and Gröger, M. and Dutheil, C. and Börgel, F. and Safonova, K. and Christensen, O. B. and Kjellström, E.}, - title = {Oceanographic regional climate projections for the Baltic Sea until 2100}, + title = {Oceanographic regional climate projections for the Baltic Sea until 2100}, journal = {Earth System Dynamics}, volume = {13}, number = {1}, @@ -13922,7 +13966,7 @@ https://esd.copernicus.org/articles/13/457/2022/esd-13-457-2022.pdf}, volume = {19}, number = {3}, pages = {255-266}, - abstract = {The Baltic Sea ice season under changing climate conditions is investigated using a 3D coupled ice–ocean model. Results of multi-year simulations for the period of May 1980 to December 1993 are compared with observations from monitoring stations, ice charts and satellite data. The period 1980–1993 has been selected mainly because of the availability of homogeneous observational data sets for atmospheric variables and river runoff with sufficient quality to force a 3D high resolution Baltic Sea model. The observed seasonal variation of sea ice is well reproduced by the model. Furthermore, two sets of 9-year time slice experiments have been performed using results of an atmospheric regional climate model as forcing, one representing pre-industrial greenhouse conditions (control simulation), and the other a global warming with a 150% increase of equivalent CO2 concentration (scenario simulation). At the lateral boundaries of the regional climate model, results of the global atmosphere–ocean general circulation model HadCM2 have been prescribed. In the control run, the mean seasonal cycle of ice cover and its variability is simulated realistically compared to observations, but the seasonal ice cover maximum is shifted in time by about 18 days and the simulated mean melting date is delayed. Mild winters are missing in the relatively short control run. The decrease of mean ice extent in the scenario, compared to the control run, is dramatic, reducing from 210 · 109 m2 to 82 · 109 m2 (a relative change of 61%). However, in all scenario years, ice is still formed in the northernmost basin of the Baltic Sea, the Bothnian Bay. The minimum ice extent is 16 · 109 m2 (for comparison: the area of the Bothnian Bay is about twice as large). The mean number of ice days decreases significantly. In the fast ice zone of the Bothnian Bay the mean ice season is reduced by 40 days. The ice in the scenario run is thinner with less snow on top. In the central Bothnian Bay, mean maximum annual ice thickness is reduced by 25 cm from 54 to 29 cm. Model dependent uncertainties are discussed.}, + abstract = {The Baltic Sea ice season under changing climate conditions is investigated using a 3D coupled ice–ocean model. Results of multi-year simulations for the period of May 1980 to December 1993 are compared with observations from monitoring stations, ice charts and satellite data. The period 1980–1993 has been selected mainly because of the availability of homogeneous observational data sets for atmospheric variables and river runoff with sufficient quality to force a 3D high resolution Baltic Sea model. The observed seasonal variation of sea ice is well reproduced by the model. Furthermore, two sets of 9-year time slice experiments have been performed using results of an atmospheric regional climate model as forcing, one representing pre-industrial greenhouse conditions (control simulation), and the other a global warming with a 150% increase of equivalent CO2 concentration (scenario simulation). At the lateral boundaries of the regional climate model, results of the global atmosphere–ocean general circulation model HadCM2 have been prescribed. In the control run, the mean seasonal cycle of ice cover and its variability is simulated realistically compared to observations, but the seasonal ice cover maximum is shifted in time by about 18 days and the simulated mean melting date is delayed. Mild winters are missing in the relatively short control run. The decrease of mean ice extent in the scenario, compared to the control run, is dramatic, reducing from 210 · 109 m2 to 82 · 109 m2 (a relative change of 61%). However, in all scenario years, ice is still formed in the northernmost basin of the Baltic Sea, the Bothnian Bay. The minimum ice extent is 16 · 109 m2 (for comparison: the area of the Bothnian Bay is about twice as large). The mean number of ice days decreases significantly. In the fast ice zone of the Bothnian Bay the mean ice season is reduced by 40 days. The ice in the scenario run is thinner with less snow on top. In the central Bothnian Bay, mean maximum annual ice thickness is reduced by 25 cm from 54 to 29 cm. Model dependent uncertainties are discussed.}, ISSN = {1432-0894}, DOI = {https://doi.org/10.1007/s00382-001-0225-5}, url = {https://doi.org/10.1007/s00382-001-0225-5}, @@ -14010,7 +14054,7 @@ https://esd.copernicus.org/articles/13/457/2022/esd-13-457-2022.pdf}, title = {Transient scenario simulations for the Baltic Sea Region during the 21st century}, institution = {SMHI}, note = {2020-11-30T09:11:02.429+01:00}, - abstract = {Vattnet i Östersjön är optiskt sett uppdelat i många beståndsdelar och har ytterst höga halter av färgade lösta organiska ämnen (colored dissolved organic matter, CDOM), även kallade för gulämnen, gilvin eller gelbstoff. CDOM är en komplex blandning av kemiska bindningar skapade vid nedbrytningen av fotosyntetiskt producerat organiskt material och det har en avsevärd påverkan på ljusfältet i vattnet. En kvantitativ beskrivning av dynamiken och variabiliteten behövs ofta för att få en riktig beskrivning av ljusets nedträngning och därefter av tex primärproduktionen.      Denna studie är ett första försök att inkludera CDOM i en modell för Östersjön. Modellförsöken baseras på en fix koncentration i de 30 största floderna. I brist på omfattande mätningar antas en flodtillförsel som är proportionell mot totalt organiskt kol. Eftersom ursprunget och ödet fortfarande är föremål för diskussioner testar vi olika hastigheter av CDOM sönderfall och jämför resultaten med satellitobservationer. Jämfört med temperatur eller tidsberoende sönderfall uppnåddes bäst resultat med ett ljusberoende sönderfall. Att behandla CDOM som ett konservativt spårämne leder inte till tillfredsställande resultat.}, + abstract = {Vattnet i Östersjön är optiskt sett uppdelat i många beståndsdelar och har ytterst höga halter av färgade lösta organiska ämnen (colored dissolved organic matter, CDOM), även kallade för gulämnen, gilvin eller gelbstoff. CDOM är en komplex blandning av kemiska bindningar skapade vid nedbrytningen av fotosyntetiskt producerat organiskt material och det har en avsevärd påverkan på ljusfältet i vattnet. En kvantitativ beskrivning av dynamiken och variabiliteten behövs ofta för att få en riktig beskrivning av ljusets nedträngning och därefter av tex primärproduktionen. Denna studie är ett första försök att inkludera CDOM i en modell för Östersjön. Modellförsöken baseras på en fix koncentration i de 30 största floderna. I brist på omfattande mätningar antas en flodtillförsel som är proportionell mot totalt organiskt kol. Eftersom ursprunget och ödet fortfarande är föremål för diskussioner testar vi olika hastigheter av CDOM sönderfall och jämför resultaten med satellitobservationer. Jämfört med temperatur eller tidsberoende sönderfall uppnåddes bäst resultat med ett ljusberoende sönderfall. Att behandla CDOM som ett konservativt spårämne leder inte till tillfredsställande resultat.}, keywords = {Oceanography, Hydrology and Water Resources Oceanografi, hydrologi och vattenresurser}, url = {http://urn.kb.se/resolve?urn=urn:nbn:se:smhi:diva-2234}, @@ -14173,7 +14217,7 @@ Oceanografi, hydrologi och vattenresurser}, volume = {53}, number = {1}, pages = {1145-1166}, - abstract = {In the Baltic Sea hypoxia has been increased considerably since the first oxygen measurements became available in 1898. In 2016 the annual maximum extent of hypoxia covered an area of the sea bottom of about 70,000 km2, comparable with the size of Ireland, whereas 150 years ago hypoxia was presumably not existent or at least very small. The general view is that the increase in hypoxia was caused by eutrophication due to anthropogenic riverborne nutrient loads. However, the role of changing climate, e.g. warming, is less clear. In this study, different causes of expanding hypoxia were investigated. A reconstruction of the changing Baltic Sea ecosystem during the period 1850–2008 was performed using a coupled physical-biogeochemical ocean circulation model. To disentangle the  drivers of eutrophication and hypoxia a series of sensitivity experiments was carried out. We found that the decadal to centennial changes in eutrophication and hypoxia were mainly caused by changing riverborne nutrient loads and atmospheric deposition. The impacts of other drivers like observed warming and eustatic sea level rise were comparatively smaller but still important depending on the selected ecosystem indicator. Further, (1) fictively combined changes in air temperature, cloudiness and mixed layer depth chosen from 1904, (2) exaggerated increases in nutrient concentrations in the North Sea and (3) high-end scenarios of future sea level rise may have an important impact. However, during the past 150 years hypoxia would not have been developed if nutrient conditions had remained at pristine levels.}, + abstract = {In the Baltic Sea hypoxia has been increased considerably since the first oxygen measurements became available in 1898. In 2016 the annual maximum extent of hypoxia covered an area of the sea bottom of about 70,000 km2, comparable with the size of Ireland, whereas 150 years ago hypoxia was presumably not existent or at least very small. The general view is that the increase in hypoxia was caused by eutrophication due to anthropogenic riverborne nutrient loads. However, the role of changing climate, e.g. warming, is less clear. In this study, different causes of expanding hypoxia were investigated. A reconstruction of the changing Baltic Sea ecosystem during the period 1850–2008 was performed using a coupled physical-biogeochemical ocean circulation model. To disentangle the drivers of eutrophication and hypoxia a series of sensitivity experiments was carried out. We found that the decadal to centennial changes in eutrophication and hypoxia were mainly caused by changing riverborne nutrient loads and atmospheric deposition. The impacts of other drivers like observed warming and eustatic sea level rise were comparatively smaller but still important depending on the selected ecosystem indicator. Further, (1) fictively combined changes in air temperature, cloudiness and mixed layer depth chosen from 1904, (2) exaggerated increases in nutrient concentrations in the North Sea and (3) high-end scenarios of future sea level rise may have an important impact. However, during the past 150 years hypoxia would not have been developed if nutrient conditions had remained at pristine levels.}, ISSN = {1432-0894}, DOI = {https://doi.org/10.1007/s00382-018-4296-y}, url = {https://doi.org/10.1007/s00382-018-4296-y}, @@ -14317,7 +14361,7 @@ Oceanografi, hydrologi och vattenresurser}, volume = {95}, number = {13}, pages = {109-110}, - abstract = {From Russia in the east to Sweden, Denmark, and Germany in the west, reaching south to the tips of the Czech Republic, Slovakia, and Ukraine, the Baltic Sea watershed drains nearly 20% of Europe (see Figure 1). In the highly populated south, the temperate climate hosts intensive agriculture and industry. In the north, the landscape is boreal and rural. In the Baltic Sea itself, complex bathymetry and stratification patterns as well as extended hypoxic and anoxic deep waters add to the diversity. Yet in recent history, the differences across the Baltic Sea region have been more than physical: In the mid-20th century, the watershed was split in two.}, + abstract = {From Russia in the east to Sweden, Denmark, and Germany in the west, reaching south to the tips of the Czech Republic, Slovakia, and Ukraine, the Baltic Sea watershed drains nearly 20% of Europe (see Figure 1). In the highly populated south, the temperate climate hosts intensive agriculture and industry. In the north, the landscape is boreal and rural. In the Baltic Sea itself, complex bathymetry and stratification patterns as well as extended hypoxic and anoxic deep waters add to the diversity. Yet in recent history, the differences across the Baltic Sea region have been more than physical: In the mid-20th century, the watershed was split in two.}, DOI = {https://doi.org/10.1002/2014EO130001}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014EO130001}, year = {2014}, @@ -14551,7 +14595,7 @@ Finland}, volume = {409}, number = {6823}, pages = {1026-1029}, - abstract = {Global sea level is an indicator of climate change1,2,3, as it is sensitive to both thermal expansion of the oceans and a reduction of land-based glaciers. Global sea-level rise has been estimated by correcting observations from tide gauges for glacial isostatic adjustment—the continuing sea-level response due to melting of Late Pleistocene ice—and by computing the global mean of these residual trends4,5,6,7,8,9. In such analyses, spatial patterns of sea-level rise are assumed to be signals that will average out over geographically distributed tide-gauge data. But a long history of modelling studies10,11,12 has demonstrated that non-uniform—that is, non-eustatic—sea-level redistributions can be produced by variations in the volume of the polar ice sheets. Here we present numerical predictions of gravitationally consistent patterns of sea-level change following variations in either the Antarctic or Greenland ice sheets or the melting of a suite of small mountain glaciers. These predictions are characterized by geometrically distinct patterns that reconcile spatial variations in previously published sea-level records. Under the—albeit coarse—assumption of a globally uniform thermal expansion of the oceans, our approach suggests melting of the Greenland ice complex over the last century equivalent to ∼0.6 mm yr-1 of sea-level rise.}, + abstract = {Global sea level is an indicator of climate change1,2,3, as it is sensitive to both thermal expansion of the oceans and a reduction of land-based glaciers. Global sea-level rise has been estimated by correcting observations from tide gauges for glacial isostatic adjustment—the continuing sea-level response due to melting of Late Pleistocene ice—and by computing the global mean of these residual trends4,5,6,7,8,9. In such analyses, spatial patterns of sea-level rise are assumed to be signals that will average out over geographically distributed tide-gauge data. But a long history of modelling studies10,11,12 has demonstrated that non-uniform—that is, non-eustatic—sea-level redistributions can be produced by variations in the volume of the polar ice sheets. Here we present numerical predictions of gravitationally consistent patterns of sea-level change following variations in either the Antarctic or Greenland ice sheets or the melting of a suite of small mountain glaciers. These predictions are characterized by geometrically distinct patterns that reconcile spatial variations in previously published sea-level records. Under the—albeit coarse—assumption of a globally uniform thermal expansion of the oceans, our approach suggests melting of the Greenland ice complex over the last century equivalent to ∼0.6 mm yr-1 of sea-level rise.}, ISSN = {1476-4687}, DOI = {https://doi.org/10.1038/35059054}, url = {https://doi.org/10.1038/35059054}, @@ -14657,7 +14701,7 @@ Finland}, journal = {Quaternary International}, volume = {550}, pages = {55-65}, - abstract = {Numerous hydro-acoustic studies of the seabed of the Baltic Sea have revealed the unusual occurrence of sediment contourite drifts and re-suspension at greater water depths. In addition, radiocarbon dating of bulk sediments indicates significant age reversals. We present new geophysical, sediment proxy data (including extensive radiocarbon dating) and hydrographic measurements, which are combined with results of numerous marine geological studies performed during the last decades. These data indicate that a deep-water formation process significantly affected the seabed dynamics during regional climatically cold phases during the last c. 7,000 years. We propose that, during the colder periods (e.g. the Little Ice Age), newly formed bottom waters likely caused widespread re-suspension of organic carbon-rich laminated sediments that were deposited during the preceding warm periods in shallower areas, and this material was transported to and re-deposited in the deeper parts of the Baltic Sea sub-basins. In our scenario, a topographic feature, known as the Baltic Sea Klint, acted as a hydrographic barrier for deep-water formed in the northern Baltic. Thus, during the cold periods increased lateral matter influx from the northern Baltic led to the accumulation of much thicker macroscopically homogenous clayey sediments in sub-basins north of the Klint. Moreover, deep-water formation produced bottom currents that led to the formation of sediment contourite drifts at water depths of >200 m in the Bothnian Sea, the Åland Deep and northern central Baltic Sea sub-basins. Bottom water ventilation in the Baltic Sea is generally assumed to be determined solely by the inflow of oxygen-rich, saline water from the North Sea, but we challenge this assumption and postulate that deep-water formation is a key process that ventilates the bottom waters of the Baltic Sea during climatically cold periods with substantial implications for its sedimentary archive.}, + abstract = {Numerous hydro-acoustic studies of the seabed of the Baltic Sea have revealed the unusual occurrence of sediment contourite drifts and re-suspension at greater water depths. In addition, radiocarbon dating of bulk sediments indicates significant age reversals. We present new geophysical, sediment proxy data (including extensive radiocarbon dating) and hydrographic measurements, which are combined with results of numerous marine geological studies performed during the last decades. These data indicate that a deep-water formation process significantly affected the seabed dynamics during regional climatically cold phases during the last c. 7,000 years. We propose that, during the colder periods (e.g. the Little Ice Age), newly formed bottom waters likely caused widespread re-suspension of organic carbon-rich laminated sediments that were deposited during the preceding warm periods in shallower areas, and this material was transported to and re-deposited in the deeper parts of the Baltic Sea sub-basins. In our scenario, a topographic feature, known as the Baltic Sea Klint, acted as a hydrographic barrier for deep-water formed in the northern Baltic. Thus, during the cold periods increased lateral matter influx from the northern Baltic led to the accumulation of much thicker macroscopically homogenous clayey sediments in sub-basins north of the Klint. Moreover, deep-water formation produced bottom currents that led to the formation of sediment contourite drifts at water depths of >200 m in the Bothnian Sea, the Åland Deep and northern central Baltic Sea sub-basins. Bottom water ventilation in the Baltic Sea is generally assumed to be determined solely by the inflow of oxygen-rich, saline water from the North Sea, but we challenge this assumption and postulate that deep-water formation is a key process that ventilates the bottom waters of the Baltic Sea during climatically cold periods with substantial implications for its sedimentary archive.}, keywords = {Baltic sea sediments Sediment dynamics Deep-water formation @@ -14879,7 +14923,7 @@ https://os.copernicus.org/articles/16/1183/2020/os-16-1183-2020.pdf}, volume = {102}, number = {1}, pages = {67-99}, - abstract = {In order to estimate the possible parameters of future extreme extratropical cyclones (ETCs), a pseudo-climate modelling study of three historical storms originating from the Atlantic Ocean and one from the Black Sea area was performed using multi-model approach considering IPCC emission scenarios RCP4.5 and RCP8.5 for the twenty-first century. Applying Weather Research and Forecasting atmosphere model (WRF), Finite Volume Community Ocean model (FVCOM-SWAVE) and the Simulating WAves Nearshore (SWAN) model, the changes in initial conditions in atmospheric air temperature, sea surface temperature and relative humidity were considered on the basis of 14 CMIP5 general circulation models ensemble. According to the future scenario results, no notable changes are expected in minimum atmospheric pressure within the ETCs of the future; however, the low pressure area was slightly larger and the strong wind zone was extending further south with greater peak wind speeds in the future (year 2081–2100) simulations. This, in turn, yielded a small surge height increase at Pärnu under RCP4.5 scenario; however, under RCP8.5 scenario the surge increase was up to 22–59 cm. Westerly approaching ETCs will bring more precipitation to the Baltic Sea area in the (warmer) future. In case of a southerly cyclone, the results were more mixed. An insignificant increase in wave heights during extreme storm conditions occurred. Although RCP8.5 future scenario is usually considered as unrealistic, the results of this study still suggest that the extreme ETCs may become more dangerous in the future, although probably not as certainly as tropical cyclones.}, + abstract = {In order to estimate the possible parameters of future extreme extratropical cyclones (ETCs), a pseudo-climate modelling study of three historical storms originating from the Atlantic Ocean and one from the Black Sea area was performed using multi-model approach considering IPCC emission scenarios RCP4.5 and RCP8.5 for the twenty-first century. Applying Weather Research and Forecasting atmosphere model (WRF), Finite Volume Community Ocean model (FVCOM-SWAVE) and the Simulating WAves Nearshore (SWAN) model, the changes in initial conditions in atmospheric air temperature, sea surface temperature and relative humidity were considered on the basis of 14 CMIP5 general circulation models ensemble. According to the future scenario results, no notable changes are expected in minimum atmospheric pressure within the ETCs of the future; however, the low pressure area was slightly larger and the strong wind zone was extending further south with greater peak wind speeds in the future (year 2081–2100) simulations. This, in turn, yielded a small surge height increase at Pärnu under RCP4.5 scenario; however, under RCP8.5 scenario the surge increase was up to 22–59 cm. Westerly approaching ETCs will bring more precipitation to the Baltic Sea area in the (warmer) future. In case of a southerly cyclone, the results were more mixed. An insignificant increase in wave heights during extreme storm conditions occurred. Although RCP8.5 future scenario is usually considered as unrealistic, the results of this study still suggest that the extreme ETCs may become more dangerous in the future, although probably not as certainly as tropical cyclones.}, ISSN = {1573-0840}, DOI = {https://doi.org/10.1007/s11069-020-03911-2}, url = {https://doi.org/10.1007/s11069-020-03911-2}, @@ -15042,7 +15086,7 @@ Northern hemisphere}, journal = {Energy}, volume = {171}, pages = {135-148}, - abstract = {Using projections of surface solar radiation and temperature from 23 CMIP5 global climate models for two climate change scenarios (RCP4.5 & 8.5) we quantify the average change in PV electricity production expected in the years 2060–2080 compared to the present (2007–2027). We upsample daily radiation data to hourly resolution with a sinusoidal diurnal cycle model and split it into direct and diffuse radiation with the semi-empirical BRL model as input to a PV electricity generation model. Locally, changes in PV potential from −6% to +3% in annual and −25% to +10% in monthly means are shown. These projections are combined with a PV deployment scenario and show countries benefitting from increased PV yields include Spain, France, Italy and Germany. We also calculate uncertainties when calculating PV yield with input data at daily or lower resolution, demonstrating that our method to derive synthetic hourly profiles should be of use for other researchers using input data with low temporal resolution. We conclude that PV is an attractive and no-regrets investment in Europe irrespective of future climate change, and can continue to play a key role in energy system decarbonisation.}, + abstract = {Using projections of surface solar radiation and temperature from 23 CMIP5 global climate models for two climate change scenarios (RCP4.5 & 8.5) we quantify the average change in PV electricity production expected in the years 2060–2080 compared to the present (2007–2027). We upsample daily radiation data to hourly resolution with a sinusoidal diurnal cycle model and split it into direct and diffuse radiation with the semi-empirical BRL model as input to a PV electricity generation model. Locally, changes in PV potential from −6% to +3% in annual and −25% to +10% in monthly means are shown. These projections are combined with a PV deployment scenario and show countries benefitting from increased PV yields include Spain, France, Italy and Germany. We also calculate uncertainties when calculating PV yield with input data at daily or lower resolution, demonstrating that our method to derive synthetic hourly profiles should be of use for other researchers using input data with low temporal resolution. We conclude that PV is an attractive and no-regrets investment in Europe irrespective of future climate change, and can continue to play a key role in energy system decarbonisation.}, keywords = {Climate change impact Solar photovoltaic energy Energy scenarios @@ -15339,7 +15383,7 @@ predator-prey overlap}, publisher = {Springer Netherlands}, address = {Dordrecht}, pages = {23-32}, - abstract = {Climate impact research is of increasing importance because politicians, local decision makers, and the society require guidance regarding the environmental effects of global warming. This information is needed on a regional scale which cannot be provided by global climate models. Therefore, tools are needed to translate global climate trends into a regional scale. Regional climate models are used to scale global climate simulations with coarser resolution to a finer grid. Beside the knowledge about atmospheric variables further information of the marine environment, especially for coastal regions, is important. Regional ocean models driven by regional climate models can provide scenarios for the future development of the marine environment. A Baltic Sea ecosystem model is used for scenario simulations to assess the potential development of the Baltic Sea within the next 100 years. The simulations show an increasing water temperature in the range of 2–3.5 K and a decrease in salinity by 1.5–2 g kg–1. Events with large suboxic areas are likely to increase in the western Baltic Sea. However, the uncertainties in the climate projections are high and for robust results more scenario simulations are needed.}, + abstract = {Climate impact research is of increasing importance because politicians, local decision makers, and the society require guidance regarding the environmental effects of global warming. This information is needed on a regional scale which cannot be provided by global climate models. Therefore, tools are needed to translate global climate trends into a regional scale. Regional climate models are used to scale global climate simulations with coarser resolution to a finer grid. Beside the knowledge about atmospheric variables further information of the marine environment, especially for coastal regions, is important. Regional ocean models driven by regional climate models can provide scenarios for the future development of the marine environment. A Baltic Sea ecosystem model is used for scenario simulations to assess the potential development of the Baltic Sea within the next 100 years. The simulations show an increasing water temperature in the range of 2–3.5 K and a decrease in salinity by 1.5–2 g kg–1. Events with large suboxic areas are likely to increase in the western Baltic Sea. However, the uncertainties in the climate projections are high and for robust results more scenario simulations are needed.}, ISBN = {978-94-007-0400-8}, DOI = {https://doi.org/10.1007/978-94-007-0400-8_2}, url = {https://doi.org/10.1007/978-94-007-0400-8_2}, @@ -15439,7 +15483,7 @@ invasive species}, journal = {Science of The Total Environment}, volume = {737}, pages = {139717}, - abstract = {Analyses of dissolved oxygen concentration in Chesapeake Bay over the past three decades suggested seasonally-dependent changes in hypoxic volume and an earlier end of hypoxic conditions. While these studies hypothesized and evaluated multiple potential driving mechanisms, quantitative evidence for the relative effects of various drivers has yet to be presented. In this study, a coupled physical-biogeochemical model was used to conduct hindcast simulations between 1985 and 2016. Additional numerical experiments, in which the long-term trends in external drivers were removed, were analyzed to discern the separate effects of temperature increase, sea level rise and nutrient reduction. After the removal of seasonal and interannual variations, dissolved oxygen concentration in all regions of the estuary showed a statistically significant declining trend: ~0.1 mg/L per decade. Most of this decline occurred during winter and spring while May–August hypoxic volumes showed no changes and September hypoxic volume showed a slight decrease (~0.9 km3). Our simulations show that warming was the dominant driver of the long-term oxygen decline, overwhelming the effects of sea level rise and modest oxygen increases associated with nutrient reduction. There was no statistically significant trend in the initiation of hypoxia in spring, where the potential delay associated with nutrient reduction was offset by warming-induced oxygen declines, and both nutrient reduction and warming contributed to an earlier disintegration of hypoxia in the fall. These results suggest that recent warming has prevented oxygen improvements in Chesapeake Bay expected from nutrient input reductions and support the expectation that continued warming will serve to counter future nutrient management actions.}, + abstract = {Analyses of dissolved oxygen concentration in Chesapeake Bay over the past three decades suggested seasonally-dependent changes in hypoxic volume and an earlier end of hypoxic conditions. While these studies hypothesized and evaluated multiple potential driving mechanisms, quantitative evidence for the relative effects of various drivers has yet to be presented. In this study, a coupled physical-biogeochemical model was used to conduct hindcast simulations between 1985 and 2016. Additional numerical experiments, in which the long-term trends in external drivers were removed, were analyzed to discern the separate effects of temperature increase, sea level rise and nutrient reduction. After the removal of seasonal and interannual variations, dissolved oxygen concentration in all regions of the estuary showed a statistically significant declining trend: ~0.1 mg/L per decade. Most of this decline occurred during winter and spring while May–August hypoxic volumes showed no changes and September hypoxic volume showed a slight decrease (~0.9 km3). Our simulations show that warming was the dominant driver of the long-term oxygen decline, overwhelming the effects of sea level rise and modest oxygen increases associated with nutrient reduction. There was no statistically significant trend in the initiation of hypoxia in spring, where the potential delay associated with nutrient reduction was offset by warming-induced oxygen declines, and both nutrient reduction and warming contributed to an earlier disintegration of hypoxia in the fall. These results suggest that recent warming has prevented oxygen improvements in Chesapeake Bay expected from nutrient input reductions and support the expectation that continued warming will serve to counter future nutrient management actions.}, keywords = {Hypoxia Nutrient management Climate change @@ -15961,7 +16005,7 @@ Essential climate variable}, volume = {43}, number = {19}, pages = {10,303-10,310}, - abstract = {Abstract Small-scale sea ice deformation was studied in the coastal boundary zone (CBZ). Sequences of coastal radar images from the northern Baltic Sea (13 February to 13 May 2011) were used and trajectories of identifiable objects calculated. Average drift velocities in CBZ are small (<0.01 m/s), and events of high drift speeds are short and local. Deformations follow power law scaling but with an exponent of greater magnitude than in the Arctic. We discovered a connection between air temperature and sea ice deformation on a short time scale. During warm days, the mean deformation rate was significantly higher in all length scales than during cold days. This cannot be explained by changes in ice thickness or concentration, which suggests that the ice pack strength responds to air temperature faster than previously assumed. However, we cannot quantify how much this response is enhanced by lower ice thickness compared to the Arctic.}, + abstract = {Abstract Small-scale sea ice deformation was studied in the coastal boundary zone (CBZ). Sequences of coastal radar images from the northern Baltic Sea (13 February to 13 May 2011) were used and trajectories of identifiable objects calculated. Average drift velocities in CBZ are small (<0.01 m/s), and events of high drift speeds are short and local. Deformations follow power law scaling but with an exponent of greater magnitude than in the Arctic. We discovered a connection between air temperature and sea ice deformation on a short time scale. During warm days, the mean deformation rate was significantly higher in all length scales than during cold days. This cannot be explained by changes in ice thickness or concentration, which suggests that the ice pack strength responds to air temperature faster than previously assumed. However, we cannot quantify how much this response is enhanced by lower ice thickness compared to the Arctic.}, ISSN = {0094-8276}, DOI = {https://doi.org/10.1002/2016gl069632}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016GL069632}, @@ -16993,7 +17037,7 @@ Range shift}, volume = {8}, number = {1}, pages = {014008}, - abstract = {Trends in the duration or extent of snow cover are expected to feedback to temperature trends. We analyzed trends in dates of onset and termination of snow cover in relation to temperature over the past 27 years (1980–2006) from over 636 meteorological stations in the Northern Hemisphere. Different trends in snow duration are observed over North America and Eurasia. Over North America, the termination date of snow cover remained stable during the 27 years, whereas over Eurasia it has advanced by 2.6 ± 5.6 d decade−1. Earlier snow cover termination is systematically correlated on a year-to-year basis with a positive temperature anomaly during the snowmelt month with a sensitivity of −0.077 °C d−1. These snow feedbacks to air temperature are more important in spring, because high net radiation is coupled with thin snow cover.}, + abstract = {Trends in the duration or extent of snow cover are expected to feedback to temperature trends. We analyzed trends in dates of onset and termination of snow cover in relation to temperature over the past 27 years (1980–2006) from over 636 meteorological stations in the Northern Hemisphere. Different trends in snow duration are observed over North America and Eurasia. Over North America, the termination date of snow cover remained stable during the 27 years, whereas over Eurasia it has advanced by 2.6 ± 5.6 d decade−1. Earlier snow cover termination is systematically correlated on a year-to-year basis with a positive temperature anomaly during the snowmelt month with a sensitivity of −0.077 °C d−1. These snow feedbacks to air temperature are more important in spring, because high net radiation is coupled with thin snow cover.}, ISSN = {1748-9326}, DOI = {https://doi.org/10.1088/1748-9326/8/1/014008}, url = {http://dx.doi.org/10.1088/1748-9326/8/1/014008}, @@ -17063,7 +17107,7 @@ Range shift}, journal = {Journal of Environmental Management}, volume = {279}, pages = {111509}, - abstract = {Northern gannets (Morus bassanus) have been ranked as one of the most vulnerable species in terms of collision with offshore wind farm (OWF) turbines, and strong avoidance of OWFs has been documented for this species. Gannets increasingly encounter OWFs within the ranges of their largest breeding colonies along the European coasts. However, information on their actual reactions to OWFs during the breeding season is lacking. We investigated the possible effects of OWFs located 23–35 km north of the colony on Helgoland in the southern North Sea on breeding gannets. GPS tags were applied to 28 adult gannets breeding on Helgoland for several weeks over 2 years. Most gannets (89%) predominantly avoided the OWFs in both years, but 11% frequently entered them when foraging or commuting between the colony and foraging areas. Flight heights inside the OWFs were close to the rotor-blade zone, especially for individuals predominantly avoiding the OWFs. Gannets preferred distances of 250–450 m to the turbines when being inside the OWF. A point process modelling approach revealed that the gannets resource selection of the OWF area compared with the surroundings (outside OWF = up to 15 km from the OWF border) was reduced by 21% in 2015 and 37% in 2016. This study provides the first detailed characterisation of individual reactions of gannets to OWFs during the breeding season and one of the first comprehensive studies of OWF effects on this species based on telemetry data. The documented effects need to be considered during the planning processes for future OWFs, especially those located close to large seabird breeding colonies.}, + abstract = {Northern gannets (Morus bassanus) have been ranked as one of the most vulnerable species in terms of collision with offshore wind farm (OWF) turbines, and strong avoidance of OWFs has been documented for this species. Gannets increasingly encounter OWFs within the ranges of their largest breeding colonies along the European coasts. However, information on their actual reactions to OWFs during the breeding season is lacking. We investigated the possible effects of OWFs located 23–35 km north of the colony on Helgoland in the southern North Sea on breeding gannets. GPS tags were applied to 28 adult gannets breeding on Helgoland for several weeks over 2 years. Most gannets (89%) predominantly avoided the OWFs in both years, but 11% frequently entered them when foraging or commuting between the colony and foraging areas. Flight heights inside the OWFs were close to the rotor-blade zone, especially for individuals predominantly avoiding the OWFs. Gannets preferred distances of 250–450 m to the turbines when being inside the OWF. A point process modelling approach revealed that the gannets resource selection of the OWF area compared with the surroundings (outside OWF = up to 15 km from the OWF border) was reduced by 21% in 2015 and 37% in 2016. This study provides the first detailed characterisation of individual reactions of gannets to OWFs during the breeding season and one of the first comprehensive studies of OWF effects on this species based on telemetry data. The documented effects need to be considered during the planning processes for future OWFs, especially those located close to large seabird breeding colonies.}, keywords = {Flight height Individual behaviour Offshore wind farm @@ -17082,7 +17126,7 @@ Wildlife telemetry}, journal = {Marine Environmental Research}, volume = {162}, pages = {105157}, - abstract = {The increasing development of offshore wind farms (OWFs) worldwide leads to possible conflicts with the ecological requirements of top predators that largely depend on offshore areas. Seabird species exhibit different behavioural reactions to OWFs, ranging from avoidance resulting in habitat loss, to attraction causing an increased risk of colliding with the turbines. We investigated how OWFs affected the densities and distributions of guillemots and kittiwakes breeding in the southern North Sea and if the effects varied among seasons using a ‘before–after control impact’ (BACI) analysis approach based on a large-scale and long-term dataset covering 14 years before and 3 years after the construction of OWFs. Guillemot relative density in the OWF decreased by 63% in spring, and by 44% in the breeding season. Kittiwake relative density in the OWF decreased by 45% in the breeding season, and not significantly by 10% in spring. We furthermore estimated the response radii to the OWF for both species and seasons, finding that guillemots showed a response radius of ~9 km in spring and kittiwakes a radius of ~20 km in the breeding season. The results underline the value of large-scale and long-term assessments considering seasonal variation throughout the yearly cycle. The here provided information on the seasonally different reactions of seabirds to OWFs adds substantially to our current knowledge and provides the necessary basis for reliable estimations of OWF effects on guillemots and kittiwakes. Such evaluations are urgently needed for future planning and management recommendations to decision-makers.}, + abstract = {The increasing development of offshore wind farms (OWFs) worldwide leads to possible conflicts with the ecological requirements of top predators that largely depend on offshore areas. Seabird species exhibit different behavioural reactions to OWFs, ranging from avoidance resulting in habitat loss, to attraction causing an increased risk of colliding with the turbines. We investigated how OWFs affected the densities and distributions of guillemots and kittiwakes breeding in the southern North Sea and if the effects varied among seasons using a ‘before–after control impact’ (BACI) analysis approach based on a large-scale and long-term dataset covering 14 years before and 3 years after the construction of OWFs. Guillemot relative density in the OWF decreased by 63% in spring, and by 44% in the breeding season. Kittiwake relative density in the OWF decreased by 45% in the breeding season, and not significantly by 10% in spring. We furthermore estimated the response radii to the OWF for both species and seasons, finding that guillemots showed a response radius of ~9 km in spring and kittiwakes a radius of ~20 km in the breeding season. The results underline the value of large-scale and long-term assessments considering seasonal variation throughout the yearly cycle. The here provided information on the seasonally different reactions of seabirds to OWFs adds substantially to our current knowledge and provides the necessary basis for reliable estimations of OWF effects on guillemots and kittiwakes. Such evaluations are urgently needed for future planning and management recommendations to decision-makers.}, keywords = {Offshore wind farm BACI Environmental impact @@ -17105,7 +17149,7 @@ Management}, volume = {167}, number = {8}, pages = {118}, - abstract = {Seabirds have increasingly encountered offshore wind farms (OWFs) in European waters in the past 10 years, resulting in potential conflicts with offshore foraging areas. During the breeding season, seabirds are restricted in their choice of foraging habitat and are under increased pressure to find enough prey to raise their offspring. However, information on the individual reactions of seabirds towards OWFs during the breeding season is lacking. Three OWFs located 23–35 km north of the island of Helgoland have operated since October 2015. We studied their possible effects on locally breeding common guillemots (Uria aalge) using GPS tracking. GPS tags were deployed on 12 breeding guillemots from Helgoland for 8–26 days during 2016–2017. Most individuals avoided the OWFs, but one individual in each year briefly entered the OWFs on two or three occasions. Using a point process model, we revealed a 63% reduction in the resource selection of the OWF areas compared with the surroundings (lower confidence interval (CI) = 79% reduction, upper CI = 36% reduction). Furthermore, OWF avoidance was increased to 75% when the turbine blades were rotating (lower CI = 93% reduction, upper CI = 11% reduction). Guillemots mainly approached the OWFs from their eastern edge when resting or diving, and rarely approached the areas when commuting. These results provide a detailed description of guillemot reactions to OWFs during the breeding season, and the first comprehensive analysis of OWF effects on this species based on telemetry data. The strong avoidance effect for guillemots during the breeding season indicates the need to consider the presence of OWFs when interpreting future trends in the abundance and breeding success of this species.}, + abstract = {Seabirds have increasingly encountered offshore wind farms (OWFs) in European waters in the past 10 years, resulting in potential conflicts with offshore foraging areas. During the breeding season, seabirds are restricted in their choice of foraging habitat and are under increased pressure to find enough prey to raise their offspring. However, information on the individual reactions of seabirds towards OWFs during the breeding season is lacking. Three OWFs located 23–35 km north of the island of Helgoland have operated since October 2015. We studied their possible effects on locally breeding common guillemots (Uria aalge) using GPS tracking. GPS tags were deployed on 12 breeding guillemots from Helgoland for 8–26 days during 2016–2017. Most individuals avoided the OWFs, but one individual in each year briefly entered the OWFs on two or three occasions. Using a point process model, we revealed a 63% reduction in the resource selection of the OWF areas compared with the surroundings (lower confidence interval (CI) = 79% reduction, upper CI = 36% reduction). Furthermore, OWF avoidance was increased to 75% when the turbine blades were rotating (lower CI = 93% reduction, upper CI = 11% reduction). Guillemots mainly approached the OWFs from their eastern edge when resting or diving, and rarely approached the areas when commuting. These results provide a detailed description of guillemot reactions to OWFs during the breeding season, and the first comprehensive analysis of OWF effects on this species based on telemetry data. The strong avoidance effect for guillemots during the breeding season indicates the need to consider the presence of OWFs when interpreting future trends in the abundance and breeding success of this species.}, ISSN = {1432-1793}, DOI = {https://doi.org/10.1007/s00227-020-03735-5}, url = {https://doi.org/10.1007/s00227-020-03735-5}, @@ -17192,7 +17236,7 @@ tropical glaciology}, volume = {123}, number = {3}, pages = {1735-1754}, - abstract = {Abstract The incoming solar radiation is the essential climate variable that determines the Earth's energy cycle and climate. As long-term high-quality surface measurements of solar radiation are rare, satellite data are used to derive more information on its spatial pattern and its temporal variability. Recently, the EUMETSAT Satellite Application on Climate Monitoring (CM SAF) has published two satellite-based climate data records: Surface Solar Radiation Data Set-Heliosat, Edition 2 (SARAH-2), and Clouds and Radiation Data Set based on AVHRR (advanced very high resolution radiometer) Satellite Measurements, Edition 2 (CLARA-A2). Both data records provide estimates of surface solar radiation. In this study, these new climate data records are compared to surface measurements in Europe during the period 1983–2015. SARAH-2 and CLARA-A2 show a high accuracy compared to ground-based observations (mean absolute deviations of 6.9 and 7.3 W/m2, respectively) highlighting a good agreement considering the temporal behavior and the spatial distribution. The results show an overall brightening period since the 1980s onward (comprised between 1.9 and 2.4 W/m2/decade), with substantial decadal and spatial variability. The strongest brightening is found in eastern Europe in spring. An exception is found for northern and southern Europe, where the trends shown by the station data are not completely reproduced by satellite data, especially in summer in southern Europe. We conclude that the major part of the observed trends in surface solar radiation in Europe is caused by changes in clouds and that remaining differences between the satellite- and the station-based data might be connected to changes in the direct aerosol effect and in snow cover.}, + abstract = {Abstract The incoming solar radiation is the essential climate variable that determines the Earth's energy cycle and climate. As long-term high-quality surface measurements of solar radiation are rare, satellite data are used to derive more information on its spatial pattern and its temporal variability. Recently, the EUMETSAT Satellite Application on Climate Monitoring (CM SAF) has published two satellite-based climate data records: Surface Solar Radiation Data Set-Heliosat, Edition 2 (SARAH-2), and Clouds and Radiation Data Set based on AVHRR (advanced very high resolution radiometer) Satellite Measurements, Edition 2 (CLARA-A2). Both data records provide estimates of surface solar radiation. In this study, these new climate data records are compared to surface measurements in Europe during the period 1983–2015. SARAH-2 and CLARA-A2 show a high accuracy compared to ground-based observations (mean absolute deviations of 6.9 and 7.3 W/m2, respectively) highlighting a good agreement considering the temporal behavior and the spatial distribution. The results show an overall brightening period since the 1980s onward (comprised between 1.9 and 2.4 W/m2/decade), with substantial decadal and spatial variability. The strongest brightening is found in eastern Europe in spring. An exception is found for northern and southern Europe, where the trends shown by the station data are not completely reproduced by satellite data, especially in summer in southern Europe. We conclude that the major part of the observed trends in surface solar radiation in Europe is caused by changes in clouds and that remaining differences between the satellite- and the station-based data might be connected to changes in the direct aerosol effect and in snow cover.}, ISSN = {2169-897X}, DOI = {https://doi.org/10.1002/2017JD027418}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JD027418}, @@ -17267,7 +17311,7 @@ Wastewater treatment}, journal = {Continental Shelf Research}, volume = {193}, pages = {104029}, - abstract = {Extreme water levels in the Baltic Sea have increased much faster than the global sea level rise. We employ long-term simulations with the Rossby Centre Ocean (RCO) circulation model in 1961–2005 for the quantification of (i) spatial variability of the increase rate of water level maxima in this water body and (ii) the contribution from different water level components to this increase. The increase rates of water level maxima vary from about 1.5 to 10 mm/yr. These values do not involve the vertical crust movements. The fastest increase in water level maxima occurred in the eastern Gulf of Finland (8–10 mm/yr), Gulf of Riga (6–9 mm/yr), near Klaipėda (6–8 mm/yr) and in the south-western Baltic Sea (5–7 mm/yr). Most of the increase in these locations stems from stronger local storm surges. The upsurge of the water level maxima on the shores of Sweden and in the eastern Gulf of Bothnia is typically 3–4 mm/yr and is almost fully governed by the joint impact of global sea level rise and increase in the maximum water volume of the entire sea.}, + abstract = {Extreme water levels in the Baltic Sea have increased much faster than the global sea level rise. We employ long-term simulations with the Rossby Centre Ocean (RCO) circulation model in 1961–2005 for the quantification of (i) spatial variability of the increase rate of water level maxima in this water body and (ii) the contribution from different water level components to this increase. The increase rates of water level maxima vary from about 1.5 to 10 mm/yr. These values do not involve the vertical crust movements. The fastest increase in water level maxima occurred in the eastern Gulf of Finland (8–10 mm/yr), Gulf of Riga (6–9 mm/yr), near Klaipėda (6–8 mm/yr) and in the south-western Baltic Sea (5–7 mm/yr). Most of the increase in these locations stems from stronger local storm surges. The upsurge of the water level maxima on the shores of Sweden and in the eastern Gulf of Bothnia is typically 3–4 mm/yr and is almost fully governed by the joint impact of global sea level rise and increase in the maximum water volume of the entire sea.}, keywords = {Sea level Extreme water level Trends @@ -17325,7 +17369,7 @@ Baltic sea}, volume = {126}, number = {3}, pages = {e2020JC016079}, - abstract = {Abstract The sensitivity of the overturning circulation in the Baltic Sea is analyzed with respect to long-term changes in atmospheric and hydrological conditions by using two state-of-the-art ocean circulation models: RCO (Rossby Centre Ocean model) with a reference simulation and various sensitivity experiments as well as MOM (Modular Ocean Model). Historical reconstructions since 1850 lasting for >150 years are considered in order to identify coherences between the overturning stream function and surface wind, river runoff, major Baltic inflows, salinity, and water temperature. Long-term time series are evaluated statistically for several subbasins of the Baltic Sea for the two different models and for the sensitivity experiments concerning the interannual, multidecadal, and centennial variability. We found that the simulated overturning circulation has a response time scale with respect to wind or runoff of around 30 years. The overturning circulation will decrease basin-wide under anomalous wind conditions which hamper the deep water flow within the Baltic Sea, under a warmer climate or when river runoff increases. However, a global sea level rise would reinforce the overturning circulation. Overall, multidecadal variations of the overturning circulation are anticorrelated to and caused by the wind parallel to the cross-section of the overturning circulation. They are not caused by river runoff and the coherence with major Baltic inflows is small. Hence, the overturning circulation does not act as a good proxy for major Baltic inflows.}, + abstract = {Abstract The sensitivity of the overturning circulation in the Baltic Sea is analyzed with respect to long-term changes in atmospheric and hydrological conditions by using two state-of-the-art ocean circulation models: RCO (Rossby Centre Ocean model) with a reference simulation and various sensitivity experiments as well as MOM (Modular Ocean Model). Historical reconstructions since 1850 lasting for >150 years are considered in order to identify coherences between the overturning stream function and surface wind, river runoff, major Baltic inflows, salinity, and water temperature. Long-term time series are evaluated statistically for several subbasins of the Baltic Sea for the two different models and for the sensitivity experiments concerning the interannual, multidecadal, and centennial variability. We found that the simulated overturning circulation has a response time scale with respect to wind or runoff of around 30 years. The overturning circulation will decrease basin-wide under anomalous wind conditions which hamper the deep water flow within the Baltic Sea, under a warmer climate or when river runoff increases. However, a global sea level rise would reinforce the overturning circulation. Overall, multidecadal variations of the overturning circulation are anticorrelated to and caused by the wind parallel to the cross-section of the overturning circulation. They are not caused by river runoff and the coherence with major Baltic inflows is small. Hence, the overturning circulation does not act as a good proxy for major Baltic inflows.}, ISSN = {2169-9275}, DOI = {https://doi.org/10.1029/2020JC016079}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JC016079}, @@ -17444,7 +17488,7 @@ Episodic sedimentation}, volume = {32}, number = {2}, pages = {543-551}, - abstract = {In Europe, tropospheric ozone pollution appears as a major air quality issue, and ozone concentrations remain potentially harmful to vegetation. In this study we compared the trends of two ozone metrics widely used for forests protection in Europe, the AOT40 (Accumulated Ozone over Threshold of 40 ppb) which only depends on surface air ozone concentrations, and the Phytotoxic Ozone Dose which is the accumulated ozone uptake through stomata over the growing season, and above a threshold Y of uptake (PODY). By using a chemistry transport model, we found that European-averaged ground-level ozone concentrations (− 2%) and AOT40 metric (− 26.5%) significantly declined from 2000 to 2014, due to successful control strategies to reduce the emission of ozone precursors in Europe since the early 1990s. In contrast, the stomatal ozone uptake by forests increased from 17.5 to 26.6 mmol O3 m−2 despite the reduction in ozone concentrations, leading to an increase of potential ozone damage on plants in Europe. In a climate change context, a biologically-sound stomatal flux-based standard (PODY) as new European legislative standard is needed.}, + abstract = {In Europe, tropospheric ozone pollution appears as a major air quality issue, and ozone concentrations remain potentially harmful to vegetation. In this study we compared the trends of two ozone metrics widely used for forests protection in Europe, the AOT40 (Accumulated Ozone over Threshold of 40 ppb) which only depends on surface air ozone concentrations, and the Phytotoxic Ozone Dose which is the accumulated ozone uptake through stomata over the growing season, and above a threshold Y of uptake (PODY). By using a chemistry transport model, we found that European-averaged ground-level ozone concentrations (− 2%) and AOT40 metric (− 26.5%) significantly declined from 2000 to 2014, due to successful control strategies to reduce the emission of ozone precursors in Europe since the early 1990s. In contrast, the stomatal ozone uptake by forests increased from 17.5 to 26.6 mmol O3 m−2 despite the reduction in ozone concentrations, leading to an increase of potential ozone damage on plants in Europe. In a climate change context, a biologically-sound stomatal flux-based standard (PODY) as new European legislative standard is needed.}, ISSN = {1993-0607}, DOI = {https://doi.org/10.1007/s11676-020-01226-3}, url = {https://doi.org/10.1007/s11676-020-01226-3}, @@ -17706,7 +17750,7 @@ prevención de la invasión de especies}, journal = {Journal of Geophysical Research: Oceans}, volume = {117}, number = {C9}, - abstract = {A better understanding of the fate of nutrients entering the Baltic Sea ecosystem is an important issue with implications for environmental management. There are two sources of nitrogen and phosphorus: riverine input and atmospheric deposition. In the case of nitrogen, the fixation of dinitrogen by diazotrophic bacteria represents a third source. From an analysis of stable nitrogen isotope ratios it was suggested that most of the riverine nitrogen is sequestered in the coastal rim, specifically along the southern Baltic Sea coast with its coarse sediments, whereas nitrogen from fixation dominates the central basins. However, pathways of nutrients and timescales between the input of the nutrients and their arrival in different basins are difficult to obtain from direct measurements. To elucidate this problem, we use a source attribution technique in a three-dimensional ecosystem model, ERGOM, to track nutrients originating from various rivers. An “age” variable is attributed to the marked elements to indicate their propagation speeds and residence times. In this paper, we specifically investigate the spreading of nitrogen and phosphorus from the riverine discharges of the Oder, Vistula, Neman and Daugava. We demonstrate which regions they are transported to and for how long they remain in the ecosystem. The model results show good agreement with source estimations from observedδ15N values in sediments. The model results suggest that 95% of nitrogen is lost by denitrification in sediments, after an average time of 1.4 years for riverine nitrogen. The residence time of riverine phosphorus is much longer and exceeds our simulated period of 35 years.}, + abstract = {A better understanding of the fate of nutrients entering the Baltic Sea ecosystem is an important issue with implications for environmental management. There are two sources of nitrogen and phosphorus: riverine input and atmospheric deposition. In the case of nitrogen, the fixation of dinitrogen by diazotrophic bacteria represents a third source. From an analysis of stable nitrogen isotope ratios it was suggested that most of the riverine nitrogen is sequestered in the coastal rim, specifically along the southern Baltic Sea coast with its coarse sediments, whereas nitrogen from fixation dominates the central basins. However, pathways of nutrients and timescales between the input of the nutrients and their arrival in different basins are difficult to obtain from direct measurements. To elucidate this problem, we use a source attribution technique in a three-dimensional ecosystem model, ERGOM, to track nutrients originating from various rivers. An “age” variable is attributed to the marked elements to indicate their propagation speeds and residence times. In this paper, we specifically investigate the spreading of nitrogen and phosphorus from the riverine discharges of the Oder, Vistula, Neman and Daugava. We demonstrate which regions they are transported to and for how long they remain in the ecosystem. The model results show good agreement with source estimations from observedδ15N values in sediments. The model results suggest that 95% of nitrogen is lost by denitrification in sediments, after an average time of 1.4 years for riverine nitrogen. The residence time of riverine phosphorus is much longer and exceeds our simulated period of 35 years.}, ISSN = {0148-0227}, DOI = {https://doi.org/10.1029/2012jc008119}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012JC008119}, @@ -17800,7 +17844,7 @@ sistemas acuáticos}, volume = {122}, number = {20}, pages = {10,773-10,800}, - abstract = {Abstract Projections of precipitation and its extremes over the European continent are analyzed in an extensive multimodel ensemble of 12 and 50 km resolution EURO-CORDEX Regional Climate Models (RCMs) forced by RCP2.6, RCP4.5, and RCP8.5 (Representative Concentration Pathway) aerosol and greenhouse gas emission scenarios. A systematic intercomparison with ENSEMBLES RCMs is carried out, such that in total information is provided for an unprecedentedly large data set of 100 RCM simulations. An evaluation finds very reasonable skill for the EURO-CORDEX models in simulating temporal and geographical variations of (mean and heavy) precipitation at both horizontal resolutions. Heavy and extreme precipitation events are projected to intensify across most of Europe throughout the whole year. All considered models agree on a distinct intensification of extremes by often more than +20% in winter and fall and over central and northern Europe. A reduction of rainy days and mean precipitation in summer is simulated by a large majority of models in the Mediterranean area, but intermodel spread between the simulations is large. In central Europe and France during summer, models project decreases in precipitation but more intense heavy and extreme rainfalls. Comparison to previous RCM projections from ENSEMBLES reveals consistency but slight differences in summer, where reductions in southern European precipitation are not as pronounced as previously projected. The projected changes of the European hydrological cycle may have substantial impact on environmental and anthropogenic systems. In particular, the simulations indicate a rising probability of summertime drought in southern Europe and more frequent and intense heavy rainfall across all of Europe.}, + abstract = {Abstract Projections of precipitation and its extremes over the European continent are analyzed in an extensive multimodel ensemble of 12 and 50 km resolution EURO-CORDEX Regional Climate Models (RCMs) forced by RCP2.6, RCP4.5, and RCP8.5 (Representative Concentration Pathway) aerosol and greenhouse gas emission scenarios. A systematic intercomparison with ENSEMBLES RCMs is carried out, such that in total information is provided for an unprecedentedly large data set of 100 RCM simulations. An evaluation finds very reasonable skill for the EURO-CORDEX models in simulating temporal and geographical variations of (mean and heavy) precipitation at both horizontal resolutions. Heavy and extreme precipitation events are projected to intensify across most of Europe throughout the whole year. All considered models agree on a distinct intensification of extremes by often more than +20% in winter and fall and over central and northern Europe. A reduction of rainy days and mean precipitation in summer is simulated by a large majority of models in the Mediterranean area, but intermodel spread between the simulations is large. In central Europe and France during summer, models project decreases in precipitation but more intense heavy and extreme rainfalls. Comparison to previous RCM projections from ENSEMBLES reveals consistency but slight differences in summer, where reductions in southern European precipitation are not as pronounced as previously projected. The projected changes of the European hydrological cycle may have substantial impact on environmental and anthropogenic systems. In particular, the simulations indicate a rising probability of summertime drought in southern Europe and more frequent and intense heavy rainfall across all of Europe.}, ISSN = {2169-897X}, DOI = {https://doi.org/10.1002/2017JD027176}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JD027176}, @@ -17949,7 +17993,7 @@ Intermittent renewable energy sources}, volume = {6}, number = {4}, pages = {045205}, - abstract = {BALTEX is an environmental research network dealing with the Earth system of the entire Baltic Sea drainage basin. Important elements include the water and energy cycle, climate variability and change, water management and extreme events, and related impacts on biogeochemical cycles. BALTEX was founded in 1993 as a GEWEX continental-scale experiment and is currently in its second 10 yr phase. Phase I (1993–2002) was primarily dedicated to hydrological, meteorological and oceanographic processes in the Baltic Sea drainage basin, hence mostly dealt with the physical aspects of the system. Scientific focus was on the hydrological cycle and the exchange of energy between the atmosphere, the Baltic Sea and the surface of its catchment. The BALTEX study area was hydrologically defined as the Baltic Sea drainage basin. The second 10 yr phase of BALTEX (Phase II: 2003–12) has strengthened regional climate research, water management issues, biogeochemical cycles and overarching efforts to reach out to stakeholders and decision makers, as well as to foster communication and education. Achievements of BALTEX Phase II have been the establishment of an assessment report of regional climate change and its impacts on the Baltic Sea basin (from hydrological to biological and socio-economic), the further development of regional physical climate models and the integration of biogeochemical and ecosystem models. BALTEX features a strong infrastructure, with an international secretariat and a publication series, and organizes various workshops and conferences. This article gives an overview of the BALTEX programme, with an emphasis on Phase II, with some examples from BALTEX-related research.}, + abstract = {BALTEX is an environmental research network dealing with the Earth system of the entire Baltic Sea drainage basin. Important elements include the water and energy cycle, climate variability and change, water management and extreme events, and related impacts on biogeochemical cycles. BALTEX was founded in 1993 as a GEWEX continental-scale experiment and is currently in its second 10 yr phase. Phase I (1993–2002) was primarily dedicated to hydrological, meteorological and oceanographic processes in the Baltic Sea drainage basin, hence mostly dealt with the physical aspects of the system. Scientific focus was on the hydrological cycle and the exchange of energy between the atmosphere, the Baltic Sea and the surface of its catchment. The BALTEX study area was hydrologically defined as the Baltic Sea drainage basin. The second 10 yr phase of BALTEX (Phase II: 2003–12) has strengthened regional climate research, water management issues, biogeochemical cycles and overarching efforts to reach out to stakeholders and decision makers, as well as to foster communication and education. Achievements of BALTEX Phase II have been the establishment of an assessment report of regional climate change and its impacts on the Baltic Sea basin (from hydrological to biological and socio-economic), the further development of regional physical climate models and the integration of biogeochemical and ecosystem models. BALTEX features a strong infrastructure, with an international secretariat and a publication series, and organizes various workshops and conferences. This article gives an overview of the BALTEX programme, with an emphasis on Phase II, with some examples from BALTEX-related research.}, ISSN = {1748-9326}, DOI = {http://doi.org/10.1088/1748-9326/6/4/045205}, url = {http://stacks.iop.org/1748-9326/6/i=4/a=045205}, @@ -18177,7 +18221,7 @@ Intermittent renewable energy sources}, volume = {109}, number = {1}, pages = {33}, - abstract = {This paper summarizes the main characteristics of the RCP8.5 scenario. The RCP8.5 combines assumptions about high population and relatively slow income growth with modest rates of technological change and energy intensity improvements, leading in the long term to high energy demand and GHG emissions in absence of climate change policies. Compared to the total set of Representative Concentration Pathways (RCPs), RCP8.5 thus corresponds to the pathway with the highest greenhouse gas emissions. Using the IIASA Integrated Assessment Framework and the MESSAGE model for the development of the RCP8.5, we focus in this paper on two important extensions compared to earlier scenarios: 1) the development of spatially explicit air pollution projections, and 2) enhancements in the land-use and land-cover change projections. In addition, we explore scenario variants that use RCP8.5 as a baseline, and assume different degrees of greenhouse gas mitigation policies to reduce radiative forcing. Based on our modeling framework, we find it technically possible to limit forcing from RCP8.5 to lower levels comparable to the other RCPs (2.6 to 6 W/m2). Our scenario analysis further indicates that climate policy-induced changes of global energy supply and demand may lead to significant co-benefits for other policy priorities, such as local air pollution.}, + abstract = {This paper summarizes the main characteristics of the RCP8.5 scenario. The RCP8.5 combines assumptions about high population and relatively slow income growth with modest rates of technological change and energy intensity improvements, leading in the long term to high energy demand and GHG emissions in absence of climate change policies. Compared to the total set of Representative Concentration Pathways (RCPs), RCP8.5 thus corresponds to the pathway with the highest greenhouse gas emissions. Using the IIASA Integrated Assessment Framework and the MESSAGE model for the development of the RCP8.5, we focus in this paper on two important extensions compared to earlier scenarios: 1) the development of spatially explicit air pollution projections, and 2) enhancements in the land-use and land-cover change projections. In addition, we explore scenario variants that use RCP8.5 as a baseline, and assume different degrees of greenhouse gas mitigation policies to reduce radiative forcing. Based on our modeling framework, we find it technically possible to limit forcing from RCP8.5 to lower levels comparable to the other RCPs (2.6 to 6 W/m2). Our scenario analysis further indicates that climate policy-induced changes of global energy supply and demand may lead to significant co-benefits for other policy priorities, such as local air pollution.}, ISSN = {1573-1480}, DOI = {https://doi.org/10.1007/s10584-011-0149-y}, url = {https://doi.org/10.1007/s10584-011-0149-y}, @@ -18263,7 +18307,7 @@ Baltic}, volume = {39}, number = {1}, pages = {82-97}, - abstract = {In the 1980s, Danish coastal waters suffered from eutrophication and several nutrient management plans have been implemented during the years to improve ecological status. This study aims at giving a holistic ecosystem perspective on 25 years of mitigation measures. We report trends of nutrient inputs and the responses to these in various chemical and biological components. Nutrient inputs from land were reduced by ~50 % for nitrogen (N) and 56 % for phosphorus (P) since 1990. These reductions resulted in significant and parallel declines in nutrient concentrations, and initiated a shift in the dominance of primary producers towards reduced phytoplankton biomass (chlorophyll a concentration) and increased cover of macroalgae in deeper waters. In the last 5 years, eelgrass meadows have also expanded towards deeper waters, in response to improving water clarity. An expected improvement of bottom water oxygen conditions has not been observed, presumably because more frequent stratification and higher water temperatures have counteracted the expected positive effects of reduced nutrient inputs. The biomass of the benthic macrofauna decreased as expected, but it was composed of a drastic decline of filter feeders paralleled by a more moderate increase of deposit feeders. This shift was most likely induced by increasing stratification. The reduced benthic filtration along with the limited eelgrass cover probably kept relatively more particles in suspension, which can explain why improvements in the Secchi depths were modest. Overall, several ecosystem components demonstrated clear signs of improvement, suggesting that at least partial recovery is attainable. On this basis, we propose a conceptual scheme for recovery of shallow coastal ecosystems following marked reductions in nutrient inputs.}, + abstract = {In the 1980s, Danish coastal waters suffered from eutrophication and several nutrient management plans have been implemented during the years to improve ecological status. This study aims at giving a holistic ecosystem perspective on 25 years of mitigation measures. We report trends of nutrient inputs and the responses to these in various chemical and biological components. Nutrient inputs from land were reduced by ~50 % for nitrogen (N) and 56 % for phosphorus (P) since 1990. These reductions resulted in significant and parallel declines in nutrient concentrations, and initiated a shift in the dominance of primary producers towards reduced phytoplankton biomass (chlorophyll a concentration) and increased cover of macroalgae in deeper waters. In the last 5 years, eelgrass meadows have also expanded towards deeper waters, in response to improving water clarity. An expected improvement of bottom water oxygen conditions has not been observed, presumably because more frequent stratification and higher water temperatures have counteracted the expected positive effects of reduced nutrient inputs. The biomass of the benthic macrofauna decreased as expected, but it was composed of a drastic decline of filter feeders paralleled by a more moderate increase of deposit feeders. This shift was most likely induced by increasing stratification. The reduced benthic filtration along with the limited eelgrass cover probably kept relatively more particles in suspension, which can explain why improvements in the Secchi depths were modest. Overall, several ecosystem components demonstrated clear signs of improvement, suggesting that at least partial recovery is attainable. On this basis, we propose a conceptual scheme for recovery of shallow coastal ecosystems following marked reductions in nutrient inputs.}, ISSN = {1559-2731}, DOI = {https://doi.org/10.1007/s12237-015-9980-0}, url = {https://doi.org/10.1007/s12237-015-9980-0}, @@ -18571,7 +18615,7 @@ Baltic}, volume = {44}, number = {7}, pages = {601-611}, - abstract = {The study showed that the open water of the Bothnian Sea (BS) is likely to have shifted from altering nitrogen and phosphorous limitations of the spring bloom to more nitrogen-limited conditions during the last 20 years. This is affected by the by inflow of phosphate-rich and oxygen-depleted water from depths near the halocline in the northern Baltic Proper, where severe oxygen conditions currently cause extreme phosphate concentrations in the deep water. The change in relation between inorganic nitrogen and phosphorous in the BS occurs first in the deep water and then progresses to the surface water. The change can potentially cause increased production in the BS and more frequent cyanobacterial blooms. There does not appear to be any immediate concern in the short-term perspective for the state of the BS, but a progression of the processes may lead to a more eutrophic state of the BS.}, + abstract = {The study showed that the open water of the Bothnian Sea (BS) is likely to have shifted from altering nitrogen and phosphorous limitations of the spring bloom to more nitrogen-limited conditions during the last 20 years. This is affected by the by inflow of phosphate-rich and oxygen-depleted water from depths near the halocline in the northern Baltic Proper, where severe oxygen conditions currently cause extreme phosphate concentrations in the deep water. The change in relation between inorganic nitrogen and phosphorous in the BS occurs first in the deep water and then progresses to the surface water. The change can potentially cause increased production in the BS and more frequent cyanobacterial blooms. There does not appear to be any immediate concern in the short-term perspective for the state of the BS, but a progression of the processes may lead to a more eutrophic state of the BS.}, ISSN = {1654-7209}, DOI = {https://doi.org/10.1007/s13280-015-0675-3}, url = {https://doi.org/10.1007/s13280-015-0675-3}, @@ -18661,7 +18705,7 @@ Adaptation}, volume = {135}, number = {2}, pages = {341-355}, - abstract = {We present an assessment of the impacts of a +2°C global warming on extreme floods and hydrological droughts (1 in 10 and 1 in 100 year events) in Europe using eleven bias-corrected climate model simulations from CORDEX Europe and three hydrological models. The results show quite contrasted results between northern and southern Europe. Flood magnitudes are expected to increase significantly south of 60oN, except for some regions (Bulgaria, Poland, south of Spain) where the results are not significant. The sign of these changes are particularly robust in large parts of Romania, Ukraine, Germany, France and North of Spain. North of this line, floods are projected to decrease in most of Finland, NW Russia and North of Sweden, with the exception of southern Sweden and some coastal areas in Norway where floods may increase. The results concerning extreme droughts are less robust, especially for drought duration where the spread of the results among the members is quite high in some areas. Anyway, drought magnitude and duration may increase in Spain, France, Italy, Greece, the Balkans, south of the UK and Ireland. Despite some remarkable differences among the hydrological models’ structure and calibration, the results are quite similar from one hydrological model to another. Finally, an analysis of floods and droughts together shows that the impact of a +2°C global warming will be most extreme for France, Spain, Portugal, Ireland, Greece and Albania. These results are particularly robust in southern France and northern Spain.}, + abstract = {We present an assessment of the impacts of a +2°C global warming on extreme floods and hydrological droughts (1 in 10 and 1 in 100 year events) in Europe using eleven bias-corrected climate model simulations from CORDEX Europe and three hydrological models. The results show quite contrasted results between northern and southern Europe. Flood magnitudes are expected to increase significantly south of 60oN, except for some regions (Bulgaria, Poland, south of Spain) where the results are not significant. The sign of these changes are particularly robust in large parts of Romania, Ukraine, Germany, France and North of Spain. North of this line, floods are projected to decrease in most of Finland, NW Russia and North of Sweden, with the exception of southern Sweden and some coastal areas in Norway where floods may increase. The results concerning extreme droughts are less robust, especially for drought duration where the spread of the results among the members is quite high in some areas. Anyway, drought magnitude and duration may increase in Spain, France, Italy, Greece, the Balkans, south of the UK and Ireland. Despite some remarkable differences among the hydrological models’ structure and calibration, the results are quite similar from one hydrological model to another. Finally, an analysis of floods and droughts together shows that the impact of a +2°C global warming will be most extreme for France, Spain, Portugal, Ireland, Greece and Albania. These results are particularly robust in southern France and northern Spain.}, ISSN = {1573-1480}, DOI = {https://doi.org/10.1007/s10584-015-1570-4}, url = {https://doi.org/10.1007/s10584-015-1570-4}, @@ -18773,7 +18817,7 @@ Adaptation}, volume = {54}, number = {6}, pages = {888-898}, - abstract = {To predict the effects of climate change, we first need information on both the current tolerance ranges of species and their future adaptive potential. Adaptive responses may originate either in genetic variation or in phenotypic plasticity, but the relative importance of these factors is poorly understood. Here, we tested the tolerance of Fucus radicans to the combination of hyposalinity and warming projected by climate models for 2070–2099. We measured the growth and survival responses of thalli in both current and future conditions, focusing on variations in tolerance among and within different clonal lineages. Survival was 32% lower in future than in current conditions, but the weight and length of the thalli which survived was respectively 267% and 178% higher when exposed to future conditions. The relatively high tolerance to the future conditions suggests that F. radicans is likely to persist in its current distributional range, which is limited to the Gulf of Bothia and Estonian coast in the Baltic Sea. Furthermore, this species may be able to expand its distribution southward and replace its congener F. vesiculosus, which, in previous studies, has not tolerated the future conditions as well. In addition, we discovered variation in tolerance to future conditions within one of the clonal lineages, which have been hitherto presumed to lack adaptive variation. The discovery of intra-clonal phenotypic plasticity means that this alga has the potential for adaptive responses to climate change, which may be the key to the future persistence of F. radicans in the Baltic Sea.}, + abstract = {To predict the effects of climate change, we first need information on both the current tolerance ranges of species and their future adaptive potential. Adaptive responses may originate either in genetic variation or in phenotypic plasticity, but the relative importance of these factors is poorly understood. Here, we tested the tolerance of Fucus radicans to the combination of hyposalinity and warming projected by climate models for 2070–2099. We measured the growth and survival responses of thalli in both current and future conditions, focusing on variations in tolerance among and within different clonal lineages. Survival was 32% lower in future than in current conditions, but the weight and length of the thalli which survived was respectively 267% and 178% higher when exposed to future conditions. The relatively high tolerance to the future conditions suggests that F. radicans is likely to persist in its current distributional range, which is limited to the Gulf of Bothia and Estonian coast in the Baltic Sea. Furthermore, this species may be able to expand its distribution southward and replace its congener F. vesiculosus, which, in previous studies, has not tolerated the future conditions as well. In addition, we discovered variation in tolerance to future conditions within one of the clonal lineages, which have been hitherto presumed to lack adaptive variation. The discovery of intra-clonal phenotypic plasticity means that this alga has the potential for adaptive responses to climate change, which may be the key to the future persistence of F. radicans in the Baltic Sea.}, ISSN = {0022-3646}, DOI = {https://doi.org/10.1111/jpy.12796}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/jpy.12796}, @@ -19011,7 +19055,7 @@ https://esd.copernicus.org/articles/13/251/2022/esd-13-251-2022.pdf}, journal = {Journal of Geophysical Research: Oceans}, volume = {117}, number = {C11}, - abstract = {The marine atmospheric boundary layer is strongly influenced by the moving surface in the presence of surface waves; the impact depends on the wave conditions and the interaction with the atmosphere. Previous studies using measurements as well as numerical simulations with large-eddy simulations have shown that surface waves propagating faster than the wind (swell) alter the surface exchange as well as turbulence properties in the atmosphere. This impact is here introduced in a coupled wave-atmosphere regional climate model with a so-called E − l turbulence scheme (where E is the turbulent kinetic energy and l is a mixing length). A wave age dependent coefficient (here called Wmix) is added to the mixing length in the turbulence parameterization. This acts similarly to inducing additional convection, with larger mixing length and increased eddy diffusivity, when we have near neutral stratification and strong swell. For shallow boundary layers the regional coupled climate model shows a larger response to the introduced wave coupling with increased near surface wind speed and smaller wind gradient between the surface and middle part of the boundary layer. The impact for the studied areas is relatively minor for parameters averaged over 1 year, but for limited periods and specific situations the impact is larger. One could expect a larger impact in areas with stronger swell dominance. We thus conclude that the impact of swell waves on the mixing in the boundary layer is not insignificant and should be taken into account when developing wave-atmosphere coupled regional climate models or global climate models.}, + abstract = {The marine atmospheric boundary layer is strongly influenced by the moving surface in the presence of surface waves; the impact depends on the wave conditions and the interaction with the atmosphere. Previous studies using measurements as well as numerical simulations with large-eddy simulations have shown that surface waves propagating faster than the wind (swell) alter the surface exchange as well as turbulence properties in the atmosphere. This impact is here introduced in a coupled wave-atmosphere regional climate model with a so-called E − l turbulence scheme (where E is the turbulent kinetic energy and l is a mixing length). A wave age dependent coefficient (here called Wmix) is added to the mixing length in the turbulence parameterization. This acts similarly to inducing additional convection, with larger mixing length and increased eddy diffusivity, when we have near neutral stratification and strong swell. For shallow boundary layers the regional coupled climate model shows a larger response to the introduced wave coupling with increased near surface wind speed and smaller wind gradient between the surface and middle part of the boundary layer. The impact for the studied areas is relatively minor for parameters averaged over 1 year, but for limited periods and specific situations the impact is larger. One could expect a larger impact in areas with stronger swell dominance. We thus conclude that the impact of swell waves on the mixing in the boundary layer is not insignificant and should be taken into account when developing wave-atmosphere coupled regional climate models or global climate models.}, DOI = {https://doi.org/10.1029/2012JC007940}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012JC007940}, year = {2012}, @@ -19144,7 +19188,7 @@ https://esd.copernicus.org/articles/13/251/2022/esd-13-251-2022.pdf}, volume = {22}, number = {1}, pages = {13-31}, - abstract = {A basic analysis is presented for a series of regional climate change simulations that were conducted by the Swedish Rossby Centre and contribute to the PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects) project. For each of the two driving global models HadAM3H and ECHAM4/OPYC3, a 30-year control run and two 30-year scenario runs (based on the SRES A2 and B2 emission scenarios) were made with the regional model. In this way, four realizations of climate change from 1961–1990 to 2071–2100 were obtained. The simulated changes are larger for the A2 than the B2 scenario (although with few qualitative differences) and in most cases in the ECHAM4/OPYC3-driven (RE) than in the HadAM3H-driven (RH) regional simulations. In all the scenario runs, the warming in northern Europe is largest in winter or late autumn. In central and southern Europe, the warming peaks in summer when it locally reaches 10 °C in the RE-A2 simulation and 6–7 °C in the RH-A2 and RE-B2 simulations. The four simulations agree on a general increase in precipitation in northern Europe especially in winter and on a general decrease in precipitation in southern and central Europe in summer, but the magnitude and the geographical patterns of the change differ markedly between RH and RE. This reflects very different changes in the atmospheric circulation during the winter half-year, which also lead to quite different simulated changes in windiness. All four simulations show a large increase in the lowest minimum temperatures in northern, central and eastern Europe, most likely due to reduced snow cover. Extreme daily precipitation increases even in most of those areas where the mean annual precipitation decreases.}, + abstract = {A basic analysis is presented for a series of regional climate change simulations that were conducted by the Swedish Rossby Centre and contribute to the PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects) project. For each of the two driving global models HadAM3H and ECHAM4/OPYC3, a 30-year control run and two 30-year scenario runs (based on the SRES A2 and B2 emission scenarios) were made with the regional model. In this way, four realizations of climate change from 1961–1990 to 2071–2100 were obtained. The simulated changes are larger for the A2 than the B2 scenario (although with few qualitative differences) and in most cases in the ECHAM4/OPYC3-driven (RE) than in the HadAM3H-driven (RH) regional simulations. In all the scenario runs, the warming in northern Europe is largest in winter or late autumn. In central and southern Europe, the warming peaks in summer when it locally reaches 10 °C in the RE-A2 simulation and 6–7 °C in the RH-A2 and RE-B2 simulations. The four simulations agree on a general increase in precipitation in northern Europe especially in winter and on a general decrease in precipitation in southern and central Europe in summer, but the magnitude and the geographical patterns of the change differ markedly between RH and RE. This reflects very different changes in the atmospheric circulation during the winter half-year, which also lead to quite different simulated changes in windiness. All four simulations show a large increase in the lowest minimum temperatures in northern, central and eastern Europe, most likely due to reduced snow cover. Extreme daily precipitation increases even in most of those areas where the mean annual precipitation decreases.}, ISSN = {1432-0894}, DOI = {https://doi.org/10.1007/s00382-003-0365-x}, url = {https://doi.org/10.1007/s00382-003-0365-x}, @@ -19173,7 +19217,7 @@ https://esd.copernicus.org/articles/13/251/2022/esd-13-251-2022.pdf}, volume = {46}, number = {1}, pages = {339-353}, - abstract = {Changes in snowfall in northern Europe (55–71°N, 5–35°E) are analysed from 12 regional model simulations of twenty-first century climate under the Special Report on Emissions Scenarios A1B scenario. As an ensemble mean, the models suggest a decrease in the winter total snowfall in nearly all of northern Europe. In the middle of the winter, however, snowfall generally increases in the coldest areas. The borderline between increasing and decreasing snowfall broadly coincides with the −11 °C isotherm in baseline (1980–2010) monthly mean temperature, although with variation between models and grid boxes. High extremes of daily snowfall remain nearly unchanged, except for decreases in the mildest areas, where snowfall as a whole becomes much less common. A smaller fraction of the snow in the simulated late twenty-first century climate falls on severely cold days and a larger fraction on days with near-zero temperatures. Not only do days with low temperatures become less common, but they also typically have more positive anomalies of sea level pressure and less snowfall for the same temperature than in the present-day climate.}, + abstract = {Changes in snowfall in northern Europe (55–71°N, 5–35°E) are analysed from 12 regional model simulations of twenty-first century climate under the Special Report on Emissions Scenarios A1B scenario. As an ensemble mean, the models suggest a decrease in the winter total snowfall in nearly all of northern Europe. In the middle of the winter, however, snowfall generally increases in the coldest areas. The borderline between increasing and decreasing snowfall broadly coincides with the −11 °C isotherm in baseline (1980–2010) monthly mean temperature, although with variation between models and grid boxes. High extremes of daily snowfall remain nearly unchanged, except for decreases in the mildest areas, where snowfall as a whole becomes much less common. A smaller fraction of the snow in the simulated late twenty-first century climate falls on severely cold days and a larger fraction on days with near-zero temperatures. Not only do days with low temperatures become less common, but they also typically have more positive anomalies of sea level pressure and less snowfall for the same temperature than in the present-day climate.}, ISSN = {1432-0894}, DOI = {https://doi.org/10.1007/s00382-015-2587-0}, url = {https://doi.org/10.1007/s00382-015-2587-0}, @@ -19437,7 +19481,7 @@ Ecopath}, volume = {47}, number = {8}, pages = {884-892}, - abstract = {Macrofaunal activities in sediments modify nutrient fluxes in different ways including the expression of species-specific functional traits and density-dependent population processes. The invasive polychaete genus Marenzelleria was first observed in the Baltic Sea in the 1980s. It has caused changes in benthic processes and affected the functioning of ecosystem services such as nutrient regulation. The large-scale effects of these changes are not known. We estimated the current Marenzelleria spp. wet weight biomass in the Baltic Sea to be 60–87 kton (95% confidence interval). We assessed the potential impact of Marenzelleria spp. on phosphorus cycling using a spatially explicit model, comparing estimates of expected sediment to water phosphorus fluxes from a biophysical model to ecologically relevant experimental measurements of benthic phosphorus flux. The estimated yearly net increases (95% CI) in phosphorous flux due to Marenzelleria spp. were 4.2–6.1 kton based on the biophysical model and 6.3–9.1 kton based on experimental data. The current biomass densities of Marenzelleria spp. in the Baltic Sea enhance the phosphorus fluxes from sediment to water on a sea basin scale. Although high densities of Marenzelleria spp. can increase phosphorus retention locally, such biomass densities are uncommon. Thus, the major effect of Marenzelleria seems to be a large-scale net decrease in the self-cleaning capacity of the Baltic Sea that counteracts human efforts to mitigate eutrophication in the region.}, + abstract = {Macrofaunal activities in sediments modify nutrient fluxes in different ways including the expression of species-specific functional traits and density-dependent population processes. The invasive polychaete genus Marenzelleria was first observed in the Baltic Sea in the 1980s. It has caused changes in benthic processes and affected the functioning of ecosystem services such as nutrient regulation. The large-scale effects of these changes are not known. We estimated the current Marenzelleria spp. wet weight biomass in the Baltic Sea to be 60–87 kton (95% confidence interval). We assessed the potential impact of Marenzelleria spp. on phosphorus cycling using a spatially explicit model, comparing estimates of expected sediment to water phosphorus fluxes from a biophysical model to ecologically relevant experimental measurements of benthic phosphorus flux. The estimated yearly net increases (95% CI) in phosphorous flux due to Marenzelleria spp. were 4.2–6.1 kton based on the biophysical model and 6.3–9.1 kton based on experimental data. The current biomass densities of Marenzelleria spp. in the Baltic Sea enhance the phosphorus fluxes from sediment to water on a sea basin scale. Although high densities of Marenzelleria spp. can increase phosphorus retention locally, such biomass densities are uncommon. Thus, the major effect of Marenzelleria seems to be a large-scale net decrease in the self-cleaning capacity of the Baltic Sea that counteracts human efforts to mitigate eutrophication in the region.}, ISSN = {1654-7209}, DOI = {https://doi.org/10.1007/s13280-018-1050-y}, url = {https://doi.org/10.1007/s13280-018-1050-y}, @@ -19624,7 +19668,7 @@ Ecopath}, volume = {74}, number = {1}, pages = {485-494}, - abstract = {“Pre-industrial” trophic conditions in the Baltic Sea were simulated with SANBALTS (Simple As Necessary BAltic Long-Term large Scale) model. External nutrient inputs to the major basins of the Baltic Sea a century ago were reconstructed from various literature and data sources. The reconstructed input of total nitrogen was less than a half and that of total phosphorus was about a third of their contemporary values. The simulated “pre-industrial” conditions are validated by comparison to actual historical data on the water transparency, oxygen concentration, primary production, and net sediment accumulation. The “pre-industrial” trophic state could have been more phosphorus limited than today because simulated basin-wide annual averages of dissolved inorganic phosphorus concentrations of 0.06–0.3 µM P are about 40–80% of their present day values, while dissolved inorganic nitrogen concentrations of 2–4 µM N are almost the same as today or even slightly higher.}, + abstract = {“Pre-industrial” trophic conditions in the Baltic Sea were simulated with SANBALTS (Simple As Necessary BAltic Long-Term large Scale) model. External nutrient inputs to the major basins of the Baltic Sea a century ago were reconstructed from various literature and data sources. The reconstructed input of total nitrogen was less than a half and that of total phosphorus was about a third of their contemporary values. The simulated “pre-industrial” conditions are validated by comparison to actual historical data on the water transparency, oxygen concentration, primary production, and net sediment accumulation. The “pre-industrial” trophic state could have been more phosphorus limited than today because simulated basin-wide annual averages of dissolved inorganic phosphorus concentrations of 0.06–0.3 µM P are about 40–80% of their present day values, while dissolved inorganic nitrogen concentrations of 2–4 µM N are almost the same as today or even slightly higher.}, keywords = {Nitrogen Phosphorus Reference conditions @@ -19756,7 +19800,7 @@ vertical distribution}, volume = {22}, number = {1}, pages = {157-167}, - abstract = {We document and analyse the implementation process of a large combined coastal protection realignment and nature protection rewetting scheme, covering about 1000 ha at the German Baltic coast. The assessment reviews local planning documents, includes a media analysis, a tourist survey, stakeholder interviews and we provide criteria for measuring success, derived from the Systems Approach Framework (SAF) concept. The full process in the Geltinger Birk took over 25 years and was finished in 2013. The early years were characterised by strong local opposition, a polarization of the local society, misinformation and negative media coverage. Land purchase, the establishment of a local information centre with an environmental manager, improved public participation, a more pro-active media strategy and the readiness to accept compromises finally enabled a successful implementation. Today, a comprehensive tourism information and guidance system exists and the area became a popular tourist place. 80% of all visitors point out the outstanding nature experience and 87% are positive about the combined coastal protection and restoration measure. Parallel, major stakeholders changed their attitude and today are positive about the situation. However, the long timespan between initiation of the process and implementation of the measure, calls for a systematic, guided management approach, like the SAF. Especially, because climate change, sea level rise and increasing pressures on the coasts require a much faster implementation of adaptation measures in future.}, + abstract = {We document and analyse the implementation process of a large combined coastal protection realignment and nature protection rewetting scheme, covering about 1000 ha at the German Baltic coast. The assessment reviews local planning documents, includes a media analysis, a tourist survey, stakeholder interviews and we provide criteria for measuring success, derived from the Systems Approach Framework (SAF) concept. The full process in the Geltinger Birk took over 25 years and was finished in 2013. The early years were characterised by strong local opposition, a polarization of the local society, misinformation and negative media coverage. Land purchase, the establishment of a local information centre with an environmental manager, improved public participation, a more pro-active media strategy and the readiness to accept compromises finally enabled a successful implementation. Today, a comprehensive tourism information and guidance system exists and the area became a popular tourist place. 80% of all visitors point out the outstanding nature experience and 87% are positive about the combined coastal protection and restoration measure. Parallel, major stakeholders changed their attitude and today are positive about the situation. However, the long timespan between initiation of the process and implementation of the measure, calls for a systematic, guided management approach, like the SAF. Especially, because climate change, sea level rise and increasing pressures on the coasts require a much faster implementation of adaptation measures in future.}, ISSN = {1874-7841}, DOI = {https://doi.org/10.1007/s11852-017-0496-6}, url = {https://doi.org/10.1007/s11852-017-0496-6}, @@ -19782,7 +19826,7 @@ vertical distribution}, volume = {22}, number = {3}, pages = {533-547}, - abstract = {Markgrafenheide-Hütelmoor covers a total area of 1000 ha (about 490 ha are coastal moor) and a coastline of about 6 km. This touristy area belongs to the city of Rostock in Germany. As response to sea level rise and heavy coastal erosion, the small seaside resort Markgrafenheide received a comprehensive storm surge protection until 2006. Subsequently, the adjacent Hütelmoor was flooded with the aim to restore it as a brackish coastal moor. Coastal protection measures at the Baltic Sea coastline were abandoned to enable natural dynamics, a coastal realignment and salt water intrusions. The entire process until full implementation took 14 years and was associated with very problematic public participation and a strong local polarization. Based on a literature and media review, two surveys, and expert interviews we retrospectively document and analyse the planning process with focus on public information, perception and participation. The local population and holidaymakers did not perceive coastal changes and if, did not associate them with climate change. Interviewees remembered single storm surges, but felt save from it and sea level rise was not perceived as a threat. 89% said that they feel insufficiently informed about the combined coastal protection wetland restoration measure, but did not use the offered information possibilities. 81% had their information from newspapers and freely distributed advertisers. It seems that insufficient information was the major reason for the problems with local acceptance and public participation. The media played a dominating role. The decline of traditional newspapers and the growths of free advertisers seemed to have a negative impact on quality of information and favoured a polarization. Additionally, we discuss local specifics like the cultural background (GDR history), traditions, frustration and the relatively old population and their role in public participation. We strongly promote a pro-active and long-term information and public relation strategy.}, + abstract = {Markgrafenheide-Hütelmoor covers a total area of 1000 ha (about 490 ha are coastal moor) and a coastline of about 6 km. This touristy area belongs to the city of Rostock in Germany. As response to sea level rise and heavy coastal erosion, the small seaside resort Markgrafenheide received a comprehensive storm surge protection until 2006. Subsequently, the adjacent Hütelmoor was flooded with the aim to restore it as a brackish coastal moor. Coastal protection measures at the Baltic Sea coastline were abandoned to enable natural dynamics, a coastal realignment and salt water intrusions. The entire process until full implementation took 14 years and was associated with very problematic public participation and a strong local polarization. Based on a literature and media review, two surveys, and expert interviews we retrospectively document and analyse the planning process with focus on public information, perception and participation. The local population and holidaymakers did not perceive coastal changes and if, did not associate them with climate change. Interviewees remembered single storm surges, but felt save from it and sea level rise was not perceived as a threat. 89% said that they feel insufficiently informed about the combined coastal protection wetland restoration measure, but did not use the offered information possibilities. 81% had their information from newspapers and freely distributed advertisers. It seems that insufficient information was the major reason for the problems with local acceptance and public participation. The media played a dominating role. The decline of traditional newspapers and the growths of free advertisers seemed to have a negative impact on quality of information and favoured a polarization. Additionally, we discuss local specifics like the cultural background (GDR history), traditions, frustration and the relatively old population and their role in public participation. We strongly promote a pro-active and long-term information and public relation strategy.}, ISSN = {1874-7841}, DOI = {https://doi.org/10.1007/s11852-017-0542-4}, url = {https://doi.org/10.1007/s11852-017-0542-4}, @@ -19792,7 +19836,7 @@ vertical distribution}, @article{Schiemann2020, author = {Schiemann, R. and Athanasiadis, P. and Barriopedro, D. and Doblas-Reyes, F. and Lohmann, K. and Roberts, M. J. and Sein, D. V. and Roberts, C. D. and Terray, L. and Vidale, P. L.}, - title = {Northern Hemisphere blocking simulation in current climate models: evaluating progress from the Climate Model Intercomparison Project Phase 5 to 6 and sensitivity to resolution}, + title = {Northern Hemisphere blocking simulation in current climate models: evaluating progress from the Climate Model Intercomparison Project Phase 5 to 6 and sensitivity to resolution}, journal = {Weather Clim. Dynam.}, volume = {1}, number = {1}, @@ -19942,7 +19986,7 @@ https://wcd.copernicus.org/articles/1/277/2020/wcd-1-277-2020.pdf}, volume = {26}, number = {10}, pages = {5574-5587}, - abstract = {Abstract Continental margins are disproportionally important for global primary production, fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota—large diatoms, dinoflagellates and copepods—that traditionally fuel higher tropic levels such as fish, sea birds and marine mammals. Here, we combine multiple time series with in situ process studies to link these declines to summer nutrient stress and increasing proportions of picophytoplankton that can comprise up to 90% of the combined pico- and nanophytoplankton biomass in coastal areas. Among the pico-fraction, it is the cyanobacterium Synechococcus that flourishes when iron and nitrogen resupply to surface waters are diminished. Our field data show how traits beyond small size give Synechococcus a competitive edge over pico- and nanoeukaryotes. Key is their ability to grow at low irradiances near the nutricline, which is aided by their superior light-harvesting system and high affinity to iron. However, minute size and lack of essential biomolecules (e.g. omega-3 polyunsaturated fatty acids and sterols) render Synechococcus poor primary producers to sustain shelf sea food webs efficiently. The combination of earlier spring blooms and lower summer food quantity and quality creates an increasing period of suboptimal feeding conditions for zooplankton at a time of year when their metabolic demand is highest. We suggest that this nutrition-related mismatch has contributed to the widespread, ~50% decline in summer copepod abundance we observe over the last 60 years. With Synechococcus clades being prominent from the tropics to the Arctic and their abundances increasing worldwide, our study informs projections of future food web dynamics in coastal and shelf areas where droughts and stratification lead to increasing nutrient starvation of surface waters.}, + abstract = {Abstract Continental margins are disproportionally important for global primary production, fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota—large diatoms, dinoflagellates and copepods—that traditionally fuel higher tropic levels such as fish, sea birds and marine mammals. Here, we combine multiple time series with in situ process studies to link these declines to summer nutrient stress and increasing proportions of picophytoplankton that can comprise up to 90% of the combined pico- and nanophytoplankton biomass in coastal areas. Among the pico-fraction, it is the cyanobacterium Synechococcus that flourishes when iron and nitrogen resupply to surface waters are diminished. Our field data show how traits beyond small size give Synechococcus a competitive edge over pico- and nanoeukaryotes. Key is their ability to grow at low irradiances near the nutricline, which is aided by their superior light-harvesting system and high affinity to iron. However, minute size and lack of essential biomolecules (e.g. omega-3 polyunsaturated fatty acids and sterols) render Synechococcus poor primary producers to sustain shelf sea food webs efficiently. The combination of earlier spring blooms and lower summer food quantity and quality creates an increasing period of suboptimal feeding conditions for zooplankton at a time of year when their metabolic demand is highest. We suggest that this nutrition-related mismatch has contributed to the widespread, ~50% decline in summer copepod abundance we observe over the last 60 years. With Synechococcus clades being prominent from the tropics to the Arctic and their abundances increasing worldwide, our study informs projections of future food web dynamics in coastal and shelf areas where droughts and stratification lead to increasing nutrient starvation of surface waters.}, ISSN = {1354-1013}, DOI = {https://doi.org/10.1111/gcb.15161}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.15161}, @@ -20039,7 +20083,7 @@ https://wcd.copernicus.org/articles/1/277/2020/wcd-1-277-2020.pdf}, volume = {23}, number = {11}, pages = {10457-10476}, - abstract = {For analysing element input into ecosystems and associated risks due to atmospheric deposition, element concentrations in moss provide complementary and time-integrated data at high spatial resolution every 5 years since 1990. The paper reviews (1) minimum sample sizes needed for reliable, statistical estimation of mean values at four different spatial scales (European and national level as well as landscape-specific level covering Europe and single countries); (2) trends of heavy metal (HM) and nitrogen (N) concentrations in moss in Europe (1990–2010); (3) correlations between concentrations of HM in moss and soil specimens collected across Norway (1990–2010); and (4) canopy drip-induced site-specific variation of N concentration in moss sampled in seven European countries (1990–2013). While the minimum sample sizes on the European and national level were achieved without exception, for some ecological land classes and elements, the coverage with sampling sites should be improved. The decline in emission and subsequent atmospheric deposition of HM across Europe has resulted in decreasing HM concentrations in moss between 1990 and 2010. In contrast, hardly any changes were observed for N in moss between 2005, when N was included into the survey for the first time, and 2010. In Norway, both, the moss and the soil survey data sets, were correlated, indicating a decrease of HM concentrations in moss and soil. At the site level, the average N deposition inside of forests was almost three times higher than the average N deposition outside of forests.}, + abstract = {For analysing element input into ecosystems and associated risks due to atmospheric deposition, element concentrations in moss provide complementary and time-integrated data at high spatial resolution every 5 years since 1990. The paper reviews (1) minimum sample sizes needed for reliable, statistical estimation of mean values at four different spatial scales (European and national level as well as landscape-specific level covering Europe and single countries); (2) trends of heavy metal (HM) and nitrogen (N) concentrations in moss in Europe (1990–2010); (3) correlations between concentrations of HM in moss and soil specimens collected across Norway (1990–2010); and (4) canopy drip-induced site-specific variation of N concentration in moss sampled in seven European countries (1990–2013). While the minimum sample sizes on the European and national level were achieved without exception, for some ecological land classes and elements, the coverage with sampling sites should be improved. The decline in emission and subsequent atmospheric deposition of HM across Europe has resulted in decreasing HM concentrations in moss between 1990 and 2010. In contrast, hardly any changes were observed for N in moss between 2005, when N was included into the survey for the first time, and 2010. In Norway, both, the moss and the soil survey data sets, were correlated, indicating a decrease of HM concentrations in moss and soil. At the site level, the average N deposition inside of forests was almost three times higher than the average N deposition outside of forests.}, ISSN = {1614-7499}, DOI = {https://doi.org/10.1007/s11356-016-6577-5}, url = {https://doi.org/10.1007/s11356-016-6577-5}, @@ -20264,7 +20308,7 @@ Wave-induced currents}, volume = {8}, number = {9}, pages = {e2019EF001474}, - abstract = {Abstract We analyze projected changes in climate extremes (extreme temperatures and heavy precipitation) in the multimodel ensembles of the fifth and sixth Coupled Model Intercomparison Projects (CMIP5 and CMIP6). The results reveal close similarity between both ensembles in the regional climate sensitivity of the projected multimodel mean changes in climate extremes, that is, their projected changes as a function of global warming. This stands in contrast to widely reported divergences in global (transient and equilibrium) climate sensitivity in the two multimodel ensembles. Some exceptions include higher warming in the South America monsoon region, lower warming in Southern Asia and Central Africa, and higher increases in heavy precipitation in Western Africa and the Sahel region in the CMIP6 ensemble. The multimodel spread in regional climate sensitivity is found to be large in both ensembles. In particular, it contributes more to intermodel spread in projected regional climate extremes compared with the intermodel spread in global climate sensitivity in CMIP6. Our results highlight the need to consider regional climate sensitivity as a distinct feature of Earth system models and a key determinant of projected regional impacts, which is largely independent of the models' response in global climate sensitivity.}, + abstract = {Abstract We analyze projected changes in climate extremes (extreme temperatures and heavy precipitation) in the multimodel ensembles of the fifth and sixth Coupled Model Intercomparison Projects (CMIP5 and CMIP6). The results reveal close similarity between both ensembles in the regional climate sensitivity of the projected multimodel mean changes in climate extremes, that is, their projected changes as a function of global warming. This stands in contrast to widely reported divergences in global (transient and equilibrium) climate sensitivity in the two multimodel ensembles. Some exceptions include higher warming in the South America monsoon region, lower warming in Southern Asia and Central Africa, and higher increases in heavy precipitation in Western Africa and the Sahel region in the CMIP6 ensemble. The multimodel spread in regional climate sensitivity is found to be large in both ensembles. In particular, it contributes more to intermodel spread in projected regional climate extremes compared with the intermodel spread in global climate sensitivity in CMIP6. Our results highlight the need to consider regional climate sensitivity as a distinct feature of Earth system models and a key determinant of projected regional impacts, which is largely independent of the models' response in global climate sensitivity.}, ISSN = {2328-4277}, DOI = {https://doi.org/10.1029/2019EF001474}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019EF001474}, @@ -20348,7 +20392,7 @@ Wave-induced currents}, volume = {48}, number = {1}, pages = {e2020GL091108}, - abstract = {Abstract Lake ice cover is essential to conserving the global freshwater supply for the 50 million lakes that freeze each winter. Here, we ask when lakes across the Northern Hemisphere may permanently lose ice cover. A K-means cluster analysis from 31 lakes identified four clusters of lakes vulnerable to losing ice cover, including shallow and deep lakes in regions where winter air temperatures hover ∼0 °C and larger and deeper lakes in colder regions. By the end of this century, we estimate that up to 5,679 lakes of 1.35 million HydroLAKES may permanently lose ice cover if greenhouse gas emissions (GHG) continue to be emitted at current levels. In the Northern Hemisphere, lakes in southern and coastal regions, some of which are among the largest lakes in the world and in close proximity to large human populations, are the most vulnerable to permanently losing ice.}, + abstract = {Abstract Lake ice cover is essential to conserving the global freshwater supply for the 50 million lakes that freeze each winter. Here, we ask when lakes across the Northern Hemisphere may permanently lose ice cover. A K-means cluster analysis from 31 lakes identified four clusters of lakes vulnerable to losing ice cover, including shallow and deep lakes in regions where winter air temperatures hover ∼0 °C and larger and deeper lakes in colder regions. By the end of this century, we estimate that up to 5,679 lakes of 1.35 million HydroLAKES may permanently lose ice cover if greenhouse gas emissions (GHG) continue to be emitted at current levels. In the Northern Hemisphere, lakes in southern and coastal regions, some of which are among the largest lakes in the world and in close proximity to large human populations, are the most vulnerable to permanently losing ice.}, ISSN = {0094-8276}, DOI = {https://doi.org/10.1029/2020GL091108}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL091108}, @@ -20483,7 +20527,7 @@ Wave-induced currents}, volume = {58}, number = {4}, pages = {e2019RG000678}, - abstract = {Abstract We assess evidence relevant to Earth's equilibrium climate sensitivity per doubling of atmospheric CO2, characterized by an effective sensitivity S. This evidence includes feedback process understanding, the historical climate record, and the paleoclimate record. An S value lower than 2 K is difficult to reconcile with any of the three lines of evidence. The amount of cooling during the Last Glacial Maximum provides strong evidence against values of S greater than 4.5 K. Other lines of evidence in combination also show that this is relatively unlikely. We use a Bayesian approach to produce a probability density function (PDF) for S given all the evidence, including tests of robustness to difficult-to-quantify uncertainties and different priors. The 66% range is 2.6–3.9 K for our Baseline calculation and remains within 2.3–4.5 K under the robustness tests; corresponding 5–95% ranges are 2.3–4.7 K, bounded by 2.0–5.7 K (although such high-confidence ranges should be regarded more cautiously). This indicates a stronger constraint on S than reported in past assessments, by lifting the low end of the range. This narrowing occurs because the three lines of evidence agree and are judged to be largely independent and because of greater confidence in understanding feedback processes and in combining evidence. We identify promising avenues for further narrowing the range in S, in particular using comprehensive models and process understanding to address limitations in the traditional forcing-feedback paradigm for interpreting past changes.}, + abstract = {Abstract We assess evidence relevant to Earth's equilibrium climate sensitivity per doubling of atmospheric CO2, characterized by an effective sensitivity S. This evidence includes feedback process understanding, the historical climate record, and the paleoclimate record. An S value lower than 2 K is difficult to reconcile with any of the three lines of evidence. The amount of cooling during the Last Glacial Maximum provides strong evidence against values of S greater than 4.5 K. Other lines of evidence in combination also show that this is relatively unlikely. We use a Bayesian approach to produce a probability density function (PDF) for S given all the evidence, including tests of robustness to difficult-to-quantify uncertainties and different priors. The 66% range is 2.6–3.9 K for our Baseline calculation and remains within 2.3–4.5 K under the robustness tests; corresponding 5–95% ranges are 2.3–4.7 K, bounded by 2.0–5.7 K (although such high-confidence ranges should be regarded more cautiously). This indicates a stronger constraint on S than reported in past assessments, by lifting the low end of the range. This narrowing occurs because the three lines of evidence agree and are judged to be largely independent and because of greater confidence in understanding feedback processes and in combining evidence. We identify promising avenues for further narrowing the range in S, in particular using comprehensive models and process understanding to address limitations in the traditional forcing-feedback paradigm for interpreting past changes.}, ISSN = {8755-1209}, DOI = {https://doi.org/10.1029/2019RG000678}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019RG000678}, @@ -20805,7 +20849,7 @@ Hawaii Undersea Military Munitions Assessment}, volume = {162}, number = {1}, pages = {141-151}, - abstract = {Coastal waters are important in linking zoobenthos and fish, as many coastal fishes feed on benthic prey in these habitats. Major drivers, such as eutrophication and climate change, may alter this link, whereas shifts in the importance of these drivers may induce different responses in zoobenthos and fish, respectively, potentially changing productivity of coastal ecosystems. The aim of this study was to assess in which way abundance and distribution of benthic-feeding fish and biomass of zoobenthos have changed over time in response to eutrophication (Secchi depth) and climate change (temperature and salinity), respectively. This was done by analyzing gross changes in the responses over three decades (1983–2012) and across depth zones. Eutrophication and climate change caused different though specific impacts on fish and zoobenthos, respectively. Throughout the 1980s, increasing benthic-feeding fish abundance in shallow waters (<6 m) was primarily attributed to eutrophication (decreasing Secchi depth), implying increased system productivity. During the 2000s, the effect of eutrophication levelled out, whereas temperature caused contrasting development of fish abundance at different depth zones. Shallow waters had lower fish abundances during warm years compared with colder ones, while the abundance increased in deeper, aphotic waters (6–20 m). In the deep waters, zoobenthos showed a contrasting, declining trend in biomass, coinciding with the decrease in salinity during the 2000s. This suggests altered ecosystem productivity and potential food shortage for benthic-feeding fish exploring the deep waters. An intensification of these trends is likely in the future, as climate change scenarios suggest further temperature increase and salinity decrease.}, + abstract = {Coastal waters are important in linking zoobenthos and fish, as many coastal fishes feed on benthic prey in these habitats. Major drivers, such as eutrophication and climate change, may alter this link, whereas shifts in the importance of these drivers may induce different responses in zoobenthos and fish, respectively, potentially changing productivity of coastal ecosystems. The aim of this study was to assess in which way abundance and distribution of benthic-feeding fish and biomass of zoobenthos have changed over time in response to eutrophication (Secchi depth) and climate change (temperature and salinity), respectively. This was done by analyzing gross changes in the responses over three decades (1983–2012) and across depth zones. Eutrophication and climate change caused different though specific impacts on fish and zoobenthos, respectively. Throughout the 1980s, increasing benthic-feeding fish abundance in shallow waters (<6 m) was primarily attributed to eutrophication (decreasing Secchi depth), implying increased system productivity. During the 2000s, the effect of eutrophication levelled out, whereas temperature caused contrasting development of fish abundance at different depth zones. Shallow waters had lower fish abundances during warm years compared with colder ones, while the abundance increased in deeper, aphotic waters (6–20 m). In the deep waters, zoobenthos showed a contrasting, declining trend in biomass, coinciding with the decrease in salinity during the 2000s. This suggests altered ecosystem productivity and potential food shortage for benthic-feeding fish exploring the deep waters. An intensification of these trends is likely in the future, as climate change scenarios suggest further temperature increase and salinity decrease.}, ISSN = {1432-1793}, DOI = {https://doi.org/10.1007/s00227-014-2579-3}, url = {https://doi.org/10.1007/s00227-014-2579-3}, @@ -20845,7 +20889,7 @@ Hawaii Undersea Military Munitions Assessment}, volume = {159}, number = {11}, pages = {2479-2490}, - abstract = {The response of the Baltic Sea spring bloom was studied in mesocosm experiments, where temperatures were elevated up to 6°C above the present-day sea surface temperature of the spring bloom season. Four of the seven experiments were carried out at different light levels (32–202 Wh m−2 at the start of the experiments) in the different experimental years. In one further experiment, the factors light and temperature were crossed, and in one experiment, the factors density of overwintering zooplankton and temperature were crossed. Overall, there was a slight temporal acceleration of the phytoplankton spring bloom, a decline of peak biomass and a decline of mean cell size with warming. The temperature influence on phytoplankton bloom timing, biomass and size structure was qualitatively highly robust across experiments. The dependence of timing, biomass, and size structure on initial conditions was tested by multiple regression analysis of the y-temperature regressions with the candidate independent variables initial light, initial phytoplankton biomass, initial microzooplankton biomass, and initial mesozooplankton (=copepod) biomass. The bloom timing predicted for mean temperatures (5.28°C) depended on light. The peak biomass showed a strong positive dependence on light and a weaker negative dependence on initial copepod density. Mean phytoplankton cell size predicted for the mean temperature responded positively to light and negatively to copepod density. The anticipated mismatch between phytoplankton supply and food demand by newly hatched copepod nauplii occurred only under the combination of low light and warm temperatures. The analysis presented here confirms earlier conclusions about temperature responses that are based on subsets of our experimental series. However, only the comprehensive analysis across all experiments highlights the importance of the factor light.}, + abstract = {The response of the Baltic Sea spring bloom was studied in mesocosm experiments, where temperatures were elevated up to 6°C above the present-day sea surface temperature of the spring bloom season. Four of the seven experiments were carried out at different light levels (32–202 Wh m−2 at the start of the experiments) in the different experimental years. In one further experiment, the factors light and temperature were crossed, and in one experiment, the factors density of overwintering zooplankton and temperature were crossed. Overall, there was a slight temporal acceleration of the phytoplankton spring bloom, a decline of peak biomass and a decline of mean cell size with warming. The temperature influence on phytoplankton bloom timing, biomass and size structure was qualitatively highly robust across experiments. The dependence of timing, biomass, and size structure on initial conditions was tested by multiple regression analysis of the y-temperature regressions with the candidate independent variables initial light, initial phytoplankton biomass, initial microzooplankton biomass, and initial mesozooplankton (=copepod) biomass. The bloom timing predicted for mean temperatures (5.28°C) depended on light. The peak biomass showed a strong positive dependence on light and a weaker negative dependence on initial copepod density. Mean phytoplankton cell size predicted for the mean temperature responded positively to light and negatively to copepod density. The anticipated mismatch between phytoplankton supply and food demand by newly hatched copepod nauplii occurred only under the combination of low light and warm temperatures. The analysis presented here confirms earlier conclusions about temperature responses that are based on subsets of our experimental series. However, only the comprehensive analysis across all experiments highlights the importance of the factor light.}, ISSN = {1432-1793}, DOI = {https://doi.org/10.1007/s00227-012-1897-6}, url = {https://doi.org/10.1007/s00227-012-1897-6}, @@ -21045,7 +21089,7 @@ Baltic Sea}, volume = {48}, number = {3}, pages = {1141-1160}, - abstract = {In this work we performed an analysis on the impacts of blocking episodes on seasonal and annual European precipitation and the associated physical mechanisms. Distinct domains were considered in detail taking into account different blocking center positions spanning between the Atlantic and western Russia. Significant positive precipitation anomalies are found for southernmost areas while generalized negative anomalies (up to 75 % in some areas) occur in large areas of central and northern Europe. This dipole of anomalies is reversed when compared to that observed during episodes of strong zonal flow conditions. We illustrate that the location of the maximum precipitation anomalies follows quite well the longitudinal positioning of the blocking centers and discuss regional and seasonal differences in the precipitation responses. To better understand the precipitation anomalies, we explore the blocking influence on cyclonic activity. The results indicate a split of the storm-tracks north and south of blocking systems, leading to an almost complete reduction of cyclonic centers in northern and central Europe and increases in southern areas, where cyclone frequency doubles during blocking episodes. However, the underlying processes conductive to the precipitation anomalies are distinct between northern and southern European regions, with a significant role of atmospheric instability in southern Europe, and moisture availability as the major driver at higher latitudes. This distinctive underlying process is coherent with the characteristic patterns of latent heat release from the ocean associated with blocked and strong zonal flow patterns. We also analyzed changes in the full range of the precipitation distribution of several regional sectors during blocked and zonal days. Results show that precipitation reductions in the areas under direct blocking influence are driven by a substantial drop in the frequency of moderate rainfall classes. Contrarily, southwards of blocking systems, frequency increases in moderate to extreme rainfall classes largely determine the precipitation anomaly in the accumulated totals. In this context, we show the close relationship between the more intrinsic torrential nature of Mediterranean precipitation regimes and the role of blocking systems in increasing the probability of extreme events.}, + abstract = {In this work we performed an analysis on the impacts of blocking episodes on seasonal and annual European precipitation and the associated physical mechanisms. Distinct domains were considered in detail taking into account different blocking center positions spanning between the Atlantic and western Russia. Significant positive precipitation anomalies are found for southernmost areas while generalized negative anomalies (up to 75 % in some areas) occur in large areas of central and northern Europe. This dipole of anomalies is reversed when compared to that observed during episodes of strong zonal flow conditions. We illustrate that the location of the maximum precipitation anomalies follows quite well the longitudinal positioning of the blocking centers and discuss regional and seasonal differences in the precipitation responses. To better understand the precipitation anomalies, we explore the blocking influence on cyclonic activity. The results indicate a split of the storm-tracks north and south of blocking systems, leading to an almost complete reduction of cyclonic centers in northern and central Europe and increases in southern areas, where cyclone frequency doubles during blocking episodes. However, the underlying processes conductive to the precipitation anomalies are distinct between northern and southern European regions, with a significant role of atmospheric instability in southern Europe, and moisture availability as the major driver at higher latitudes. This distinctive underlying process is coherent with the characteristic patterns of latent heat release from the ocean associated with blocked and strong zonal flow patterns. We also analyzed changes in the full range of the precipitation distribution of several regional sectors during blocked and zonal days. Results show that precipitation reductions in the areas under direct blocking influence are driven by a substantial drop in the frequency of moderate rainfall classes. Contrarily, southwards of blocking systems, frequency increases in moderate to extreme rainfall classes largely determine the precipitation anomaly in the accumulated totals. In this context, we show the close relationship between the more intrinsic torrential nature of Mediterranean precipitation regimes and the role of blocking systems in increasing the probability of extreme events.}, ISSN = {1432-0894}, DOI = {https://doi.org/10.1007/s00382-016-3132-5}, url = {https://doi.org/10.1007/s00382-016-3132-5}, @@ -21439,7 +21483,7 @@ Wave guide}, journal = {Estuarine, Coastal and Shelf Science}, volume = {258}, pages = {107444}, - abstract = {The CO2 system dynamics in coastal areas strongly controlled by river outflow is largely understudied. In this study, the influence of a large, continental, carbonate-rich river on the carbonate system was seasonally examined in the vicinity of the Vistula River Mouth. Three parameters describing the CO2 system were investigated: the partial pressure of carbon dioxide (pCO2), total alkalinity (TA), and pH, together with salinity, temperature, oxygen concentration, calcium cation (Ca2+), particulate inorganic carbon (PIC), and inorganic carbon (IC) in sediments. TA varied from 1700 μmol kg−1 in the brackish water of the Gdańsk Bay to 3475 μmol kg−1 in the Vistula River plume, highlighting the difference between the two end-members. Highest pCO2 was observed in October (855 μatm) and lowest in May (148 μatm). Oxygen concentration was negatively correlated to pCO2 in all seasons, suggesting that both were inversely controlled by the net ecosystem production (NEP). The pH seasonal variation was significant with a range of 0.72 unit. The calcium carbonate saturation (Ω) varied from 0.8 to 8.5 for calcite and from 0.5 to 8.5 for aragonite, both displaying Ω < 1 in February 2018. This study shows the importance of ecosystem metabolism and TA end-member variability (3138–3631 μmol kg−1), for controlling pH in the vicinity of the Vistula River Mouth. In addition, we present data on PIC, supporting possible deposition of inorganic forms of carbon to the sediments near the Vistula River Mouth.}, + abstract = {The CO2 system dynamics in coastal areas strongly controlled by river outflow is largely understudied. In this study, the influence of a large, continental, carbonate-rich river on the carbonate system was seasonally examined in the vicinity of the Vistula River Mouth. Three parameters describing the CO2 system were investigated: the partial pressure of carbon dioxide (pCO2), total alkalinity (TA), and pH, together with salinity, temperature, oxygen concentration, calcium cation (Ca2+), particulate inorganic carbon (PIC), and inorganic carbon (IC) in sediments. TA varied from 1700 μmol kg−1 in the brackish water of the Gdańsk Bay to 3475 μmol kg−1 in the Vistula River plume, highlighting the difference between the two end-members. Highest pCO2 was observed in October (855 μatm) and lowest in May (148 μatm). Oxygen concentration was negatively correlated to pCO2 in all seasons, suggesting that both were inversely controlled by the net ecosystem production (NEP). The pH seasonal variation was significant with a range of 0.72 unit. The calcium carbonate saturation (Ω) varied from 0.8 to 8.5 for calcite and from 0.5 to 8.5 for aragonite, both displaying Ω < 1 in February 2018. This study shows the importance of ecosystem metabolism and TA end-member variability (3138–3631 μmol kg−1), for controlling pH in the vicinity of the Vistula River Mouth. In addition, we present data on PIC, supporting possible deposition of inorganic forms of carbon to the sediments near the Vistula River Mouth.}, keywords = {Coastal zone pCO pH @@ -21601,7 +21645,7 @@ Saturation state}, volume = {45}, number = {7}, pages = {2083-2099}, - abstract = {Wavelet analysis of the annual North Atlantic Oscillation (NAO) index back to 1659 reveals a significant frequency band at about 60 years. Recent NAO decadal variations, including the increasing trend during 1960–1990 and decreasing trend since the mid-1990s, can be well explained by the approximate 60-year cycle. This quasi 60-year oscillation of the NAO is realistically reproduced in a long-term control simulation with version 4 of the Community Climate System Model, and the possible mechanisms are further investigated. The positive NAO forces the strengthening of the Atlantic meridional overturning circulation (AMOC) and induces a basin-wide uniform sea surface temperature (SST) warming that corresponds to the Atlantic multidecadal oscillation (AMO). The SST field exhibits a delayed response to the preceding enhanced AMOC, and shows a pattern similar to the North Atlantic tripole (NAT), with SST warming in the northern North Atlantic and cooling in the southern part. This SST pattern (negative NAT phase) may lead to an atmospheric response that resembles the negative NAO phase, and subsequently the oscillation proceeds, but in the opposite sense. Based on these mechanisms, a simple delayed oscillator model is established to explain the quasi-periodic multidecadal variability of the NAO. The magnitude of the NAO forcing of the AMOC/AMO and the time delay of the AMOC/AMO feedback are two key parameters of the delayed oscillator. For a given set of parameters, the quasi 60-year cycle of the NAO can be well predicted. This delayed oscillator model is useful for understanding of the oscillatory mechanism of the NAO, which has significant potential for decadal predictions as well as the interpretation of proxy data records.}, + abstract = {Wavelet analysis of the annual North Atlantic Oscillation (NAO) index back to 1659 reveals a significant frequency band at about 60 years. Recent NAO decadal variations, including the increasing trend during 1960–1990 and decreasing trend since the mid-1990s, can be well explained by the approximate 60-year cycle. This quasi 60-year oscillation of the NAO is realistically reproduced in a long-term control simulation with version 4 of the Community Climate System Model, and the possible mechanisms are further investigated. The positive NAO forces the strengthening of the Atlantic meridional overturning circulation (AMOC) and induces a basin-wide uniform sea surface temperature (SST) warming that corresponds to the Atlantic multidecadal oscillation (AMO). The SST field exhibits a delayed response to the preceding enhanced AMOC, and shows a pattern similar to the North Atlantic tripole (NAT), with SST warming in the northern North Atlantic and cooling in the southern part. This SST pattern (negative NAT phase) may lead to an atmospheric response that resembles the negative NAO phase, and subsequently the oscillation proceeds, but in the opposite sense. Based on these mechanisms, a simple delayed oscillator model is established to explain the quasi-periodic multidecadal variability of the NAO. The magnitude of the NAO forcing of the AMOC/AMO and the time delay of the AMOC/AMO feedback are two key parameters of the delayed oscillator. For a given set of parameters, the quasi 60-year cycle of the NAO can be well predicted. This delayed oscillator model is useful for understanding of the oscillatory mechanism of the NAO, which has significant potential for decadal predictions as well as the interpretation of proxy data records.}, ISSN = {1432-0894}, DOI = {https://doi.org/10.1007/s00382-014-2459-z}, url = {https://doi.org/10.1007/s00382-014-2459-z}, @@ -21631,7 +21675,7 @@ Saturation state}, volume = {41}, number = {8}, pages = {865-872}, - abstract = {A global trend of a warming climate may seriously affect species dependent on sea ice. We investigated the impact of climate on the Baltic ringed seals (Phoca hispida botnica), using historical and future climatological time series. Availability of suitable breeding ice is known to affect pup survival. We used detailed information on how winter temperatures affect the extent of breeding ice and a climatological model (RCA3) to project the expected effects on the Baltic ringed seal population. The population comprises of three sub-populations, and our simulations suggest that all of them will experience severely hampered growth rates during the coming 90 years. The projected 30 730 seals at the end of the twenty-first century constitutes only 16 % of the historical population size, and thus reduced ice cover alone will severely limit their growth rate. This adds burden to a species already haunted by other anthropogenic impacts.}, + abstract = {A global trend of a warming climate may seriously affect species dependent on sea ice. We investigated the impact of climate on the Baltic ringed seals (Phoca hispida botnica), using historical and future climatological time series. Availability of suitable breeding ice is known to affect pup survival. We used detailed information on how winter temperatures affect the extent of breeding ice and a climatological model (RCA3) to project the expected effects on the Baltic ringed seal population. The population comprises of three sub-populations, and our simulations suggest that all of them will experience severely hampered growth rates during the coming 90 years. The projected 30 730 seals at the end of the twenty-first century constitutes only 16 % of the historical population size, and thus reduced ice cover alone will severely limit their growth rate. This adds burden to a species already haunted by other anthropogenic impacts.}, ISSN = {1654-7209}, DOI = {https://doi.org/10.1007/s13280-012-0334-x}, url = {https://doi.org/10.1007/s13280-012-0334-x}, @@ -22025,7 +22069,7 @@ Salinity decline}, volume = {44}, number = {20}, pages = {10,666-10,674}, - abstract = {Abstract Comprehensive models of climate change projections have shown that the latitudinal band of extratropical storms will likely shift poleward under global warming. Here we study this poleward shift from a Lagrangian storm perspective, through simulations with an idealized general circulation model. By employing a feature tracking technique to identify the storms, we demonstrate that the poleward motion of individual cyclones increases with increasing global mean temperature. A potential vorticity tendency analysis of the cyclone composites highlights two leading mechanisms responsible for enhanced poleward motion: nonlinear horizontal advection and diabatic heating associated with latent heat release. Our results imply that for a 4 K rise in the global mean surface temperature, the mean poleward displacement of cyclones increases by about 0.85° of latitude, and this occurs in addition to a poleward shift of about 0.6° in their mean genesis latitude. Changes in cyclone tracks may have a significant impact on midlatitude climate, especially in localized storm tracks such as the Atlantic and Pacific storm tracks, which may exhibit a more poleward deflected shape.}, + abstract = {Abstract Comprehensive models of climate change projections have shown that the latitudinal band of extratropical storms will likely shift poleward under global warming. Here we study this poleward shift from a Lagrangian storm perspective, through simulations with an idealized general circulation model. By employing a feature tracking technique to identify the storms, we demonstrate that the poleward motion of individual cyclones increases with increasing global mean temperature. A potential vorticity tendency analysis of the cyclone composites highlights two leading mechanisms responsible for enhanced poleward motion: nonlinear horizontal advection and diabatic heating associated with latent heat release. Our results imply that for a 4 K rise in the global mean surface temperature, the mean poleward displacement of cyclones increases by about 0.85° of latitude, and this occurs in addition to a poleward shift of about 0.6° in their mean genesis latitude. Changes in cyclone tracks may have a significant impact on midlatitude climate, especially in localized storm tracks such as the Atlantic and Pacific storm tracks, which may exhibit a more poleward deflected shape.}, ISSN = {0094-8276}, DOI = {https://doi.org/10.1002/2017GL073633}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073633}, @@ -22040,7 +22084,7 @@ Salinity decline}, volume = {10}, number = {12}, pages = {908-913}, - abstract = {Earth’s midlatitudes are dominated by regions of large atmospheric weather variability—often referred to as storm tracks— which influence the distribution of temperature, precipitation and wind in the extratropics. Comprehensive climate models forced by increased greenhouse gas emissions suggest that under global warming the storm tracks shift poleward. While the poleward shift is a robust response across most models, there is currently no consensus on what the underlying dynamical mechanism is. Here we present a new perspective on the poleward shift, which is based on a Lagrangian view of the storm tracks. We show that in addition to a poleward shift in the genesis latitude of the storms, associated with the shift in baroclinicity, the latitudinal displacement of cyclonic storms increases under global warming. This is  achieved by  applying a storm-tracking algorithm to an ensemble of CMIP5 models. The increased latitudinal propagation in a warmer climate is shown to be a result of stronger upper-level winds and increased atmospheric water vapour. These changes in the propagation characteristics of the storms can have a significant impact on midlatitude climate.}, + abstract = {Earth’s midlatitudes are dominated by regions of large atmospheric weather variability—often referred to as storm tracks— which influence the distribution of temperature, precipitation and wind in the extratropics. Comprehensive climate models forced by increased greenhouse gas emissions suggest that under global warming the storm tracks shift poleward. While the poleward shift is a robust response across most models, there is currently no consensus on what the underlying dynamical mechanism is. Here we present a new perspective on the poleward shift, which is based on a Lagrangian view of the storm tracks. We show that in addition to a poleward shift in the genesis latitude of the storms, associated with the shift in baroclinicity, the latitudinal displacement of cyclonic storms increases under global warming. This is achieved by applying a storm-tracking algorithm to an ensemble of CMIP5 models. The increased latitudinal propagation in a warmer climate is shown to be a result of stronger upper-level winds and increased atmospheric water vapour. These changes in the propagation characteristics of the storms can have a significant impact on midlatitude climate.}, ISSN = {1752-0908}, DOI = {https://doi.org/10.1038/s41561-017-0001-8}, url = {https://doi.org/10.1038/s41561-017-0001-8}, @@ -22294,7 +22338,7 @@ Marine policy}, volume = {109}, number = {1}, pages = {77}, - abstract = {Representative Concentration Pathway (RCP) 4.5 is a scenario that stabilizes radiative forcing at 4.5 W m−2 in the year 2100 without ever exceeding that value. Simulated with the Global Change Assessment Model (GCAM), RCP4.5 includes long-term, global emissions of greenhouse gases, short-lived species, and land-use-land-cover in a global economic framework. RCP4.5 was updated from earlier GCAM scenarios to incorporate historical emissions and land cover information common to the RCP process and follows a cost-minimizing pathway to reach the target radiative forcing. The imperative to limit emissions in order to reach this target drives changes in the energy system, including shifts to electricity, to lower emissions energy technologies and to the deployment of carbon capture and geologic storage technology. In addition, the RCP4.5 emissions price also applies to land use emissions; as a result, forest lands expand from their present day extent. The simulated future emissions and land use were downscaled from the regional simulation to a grid to facilitate transfer to climate models. While there are many alternative pathways to achieve a radiative forcing level of 4.5 W m−2, the application of the RCP4.5 provides a common platform for climate models to explore the climate system response to stabilizing the anthropogenic components of radiative forcing.}, + abstract = {Representative Concentration Pathway (RCP) 4.5 is a scenario that stabilizes radiative forcing at 4.5 W m−2 in the year 2100 without ever exceeding that value. Simulated with the Global Change Assessment Model (GCAM), RCP4.5 includes long-term, global emissions of greenhouse gases, short-lived species, and land-use-land-cover in a global economic framework. RCP4.5 was updated from earlier GCAM scenarios to incorporate historical emissions and land cover information common to the RCP process and follows a cost-minimizing pathway to reach the target radiative forcing. The imperative to limit emissions in order to reach this target drives changes in the energy system, including shifts to electricity, to lower emissions energy technologies and to the deployment of carbon capture and geologic storage technology. In addition, the RCP4.5 emissions price also applies to land use emissions; as a result, forest lands expand from their present day extent. The simulated future emissions and land use were downscaled from the regional simulation to a grid to facilitate transfer to climate models. While there are many alternative pathways to achieve a radiative forcing level of 4.5 W m−2, the application of the RCP4.5 provides a common platform for climate models to explore the climate system response to stabilizing the anthropogenic components of radiative forcing.}, ISSN = {1573-1480}, DOI = {https://doi.org/10.1007/s10584-011-0151-4}, url = {https://doi.org/10.1007/s10584-011-0151-4}, @@ -22657,7 +22701,7 @@ gonad development}, volume = {47}, number = {3}, pages = {368-378}, - abstract = {International regulation of the emission of acidic sulphur and nitrogen oxides from commercial shipping has focused on the risks to human health, with little attention paid to the consequences for the marine environment. The introduction of stricter regulations in northern Europe has led to substantial investment in scrubbers that absorb the sulphur oxides in a counterflow of seawater. This paper examines the consequences of smokestack and scrubber release of acidic oxides in the Baltic Sea according to a range of scenarios for the coming decades. While shipping is projected to become a major source of strong acid deposition to the Baltic Sea by 2050, the long-term effect on the pH and alkalinity is projected to be significantly smaller than estimated from previous scoping studies. A significant contribution to this difference is the efficient export of surface water acidification to the North Sea on a timescale of 15–20 years.}, + abstract = {International regulation of the emission of acidic sulphur and nitrogen oxides from commercial shipping has focused on the risks to human health, with little attention paid to the consequences for the marine environment. The introduction of stricter regulations in northern Europe has led to substantial investment in scrubbers that absorb the sulphur oxides in a counterflow of seawater. This paper examines the consequences of smokestack and scrubber release of acidic oxides in the Baltic Sea according to a range of scenarios for the coming decades. While shipping is projected to become a major source of strong acid deposition to the Baltic Sea by 2050, the long-term effect on the pH and alkalinity is projected to be significantly smaller than estimated from previous scoping studies. A significant contribution to this difference is the efficient export of surface water acidification to the North Sea on a timescale of 15–20 years.}, ISSN = {1654-7209}, DOI = {https://doi.org/10.1007/s13280-017-0950-6}, url = {https://doi.org/10.1007/s13280-017-0950-6}, @@ -22935,7 +22979,7 @@ Larvae}, volume = {25}, number = {4}, pages = {1395-1408}, - abstract = {Abstract Climate change studies have long focused on effects of increasing temperatures, often without considering other simultaneously occurring environmental changes, such as browning of waters. Resolving how the combination of warming and browning of aquatic ecosystems affects fish biomass production is essential for future ecosystem functioning, fisheries, and food security. In this study, we analyzed individual- and population-level fish data from 52 temperate and boreal lakes in Northern Europe, covering large gradients in water temperature and color (absorbance, 420 nm). We show that fish (Eurasian perch, Perca fluviatilis) biomass production decreased with both high water temperatures and brown water color, being lowest in warm and brown lakes. However, while both high temperature and brown water decreased fish biomass production, the mechanisms behind the decrease differed: temperature affected the fish biomass production mainly through a decrease in population standing stock biomass, and through shifts in size- and age-distributions toward a higher proportion of young and small individuals in warm lakes; brown water color, on the other hand, mainly influenced fish biomass production through negative effects on individual body growth and length-at-age. In addition to these findings, we observed that the effects of temperature and brown water color on individual-level processes varied over ontogeny. Body growth only responded positively to higher temperatures among young perch, and brown water color had a stronger negative effect on body growth of old than on young individuals. Thus, to better understand and predict future fish biomass production, it is necessary to integrate both individual- and population-level responses and to acknowledge within-species variation. Our results suggest that global climate change, leading to browner and warmer waters, may negatively affect fish biomass production, and this effect may be stronger than caused by increased temperature or water color alone.}, + abstract = {Abstract Climate change studies have long focused on effects of increasing temperatures, often without considering other simultaneously occurring environmental changes, such as browning of waters. Resolving how the combination of warming and browning of aquatic ecosystems affects fish biomass production is essential for future ecosystem functioning, fisheries, and food security. In this study, we analyzed individual- and population-level fish data from 52 temperate and boreal lakes in Northern Europe, covering large gradients in water temperature and color (absorbance, 420 nm). We show that fish (Eurasian perch, Perca fluviatilis) biomass production decreased with both high water temperatures and brown water color, being lowest in warm and brown lakes. However, while both high temperature and brown water decreased fish biomass production, the mechanisms behind the decrease differed: temperature affected the fish biomass production mainly through a decrease in population standing stock biomass, and through shifts in size- and age-distributions toward a higher proportion of young and small individuals in warm lakes; brown water color, on the other hand, mainly influenced fish biomass production through negative effects on individual body growth and length-at-age. In addition to these findings, we observed that the effects of temperature and brown water color on individual-level processes varied over ontogeny. Body growth only responded positively to higher temperatures among young perch, and brown water color had a stronger negative effect on body growth of old than on young individuals. Thus, to better understand and predict future fish biomass production, it is necessary to integrate both individual- and population-level responses and to acknowledge within-species variation. Our results suggest that global climate change, leading to browner and warmer waters, may negatively affect fish biomass production, and this effect may be stronger than caused by increased temperature or water color alone.}, ISSN = {1354-1013}, DOI = {https://doi.org/10.1111/gcb.14551}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14551}, @@ -22981,7 +23025,7 @@ Uranium}, volume = {109}, number = {1}, pages = {5-31}, - abstract = {This paper summarizes the development process and main characteristics of the Representative Concentration Pathways (RCPs), a set of four new pathways developed for the climate modeling community as a basis for long-term and near-term modeling experiments. The four RCPs together span the range of year 2100 radiative forcing values found in the open literature, i.e. from 2.6 to 8.5 W/m2. The RCPs are the product of an innovative collaboration between integrated assessment modelers, climate modelers, terrestrial ecosystem modelers and emission inventory experts. The resulting product forms a comprehensive data set with high spatial and sectoral resolutions for the period extending to 2100. Land use and emissions of air pollutants and greenhouse gases are reported mostly at a 0.5 × 0.5 degree spatial resolution, with air pollutants also provided per sector (for well-mixed gases, a coarser resolution is used). The underlying integrated assessment model outputs for land use, atmospheric emissions and concentration data were harmonized across models and scenarios to ensure consistency with historical observations while preserving individual scenario trends. For most variables, the RCPs cover a wide range of the existing literature. The RCPs are supplemented with extensions (Extended Concentration Pathways, ECPs), which allow climate modeling experiments through the year 2300. The RCPs are an important development in climate research and provide a potential foundation for further research and assessment, including emissions mitigation and impact analysis.}, + abstract = {This paper summarizes the development process and main characteristics of the Representative Concentration Pathways (RCPs), a set of four new pathways developed for the climate modeling community as a basis for long-term and near-term modeling experiments. The four RCPs together span the range of year 2100 radiative forcing values found in the open literature, i.e. from 2.6 to 8.5 W/m2. The RCPs are the product of an innovative collaboration between integrated assessment modelers, climate modelers, terrestrial ecosystem modelers and emission inventory experts. The resulting product forms a comprehensive data set with high spatial and sectoral resolutions for the period extending to 2100. Land use and emissions of air pollutants and greenhouse gases are reported mostly at a 0.5 × 0.5 degree spatial resolution, with air pollutants also provided per sector (for well-mixed gases, a coarser resolution is used). The underlying integrated assessment model outputs for land use, atmospheric emissions and concentration data were harmonized across models and scenarios to ensure consistency with historical observations while preserving individual scenario trends. For most variables, the RCPs cover a wide range of the existing literature. The RCPs are supplemented with extensions (Extended Concentration Pathways, ECPs), which allow climate modeling experiments through the year 2300. The RCPs are an important development in climate research and provide a potential foundation for further research and assessment, including emissions mitigation and impact analysis.}, ISSN = {1573-1480}, DOI = {https://doi.org/10.1007/s10584-011-0148-z}, url = {https://doi.org/10.1007/s10584-011-0148-z}, @@ -23024,7 +23068,7 @@ Uranium}, journal = {Marine Environmental Research}, volume = {161}, pages = {105112}, - abstract = {About 50 000 tons of chemical weapons (CW) were dumped to the Baltic Sea after the Second World War. Munitions are located in the deep areas of the Baltic Sea, and there they act as a point source of contamination to the ecosystem. Corroded munitions release chemical warfare agents (CWAs) to nearby water and sediments. In this study we investigated known dumpsites (Bornholm, Gotland and Gdansk Deep) and dispersed chemical munitions, to evaluate the extent of contamination of nearby sediments, as well as to assess the degradation process of released CWA. It was found that CWA-related phenylarsenic chemicals (Clark I, Clark II and Adamsite) and sulfur mustard are released to the sediments and undergo environmental degradation to chemicals, of which some remain toxic. The extent of pollution of released CWAs and their corresponding degradation products reaches more than 250 m from the CW objects, and seem to follow a power curve decrease of concentration from the source. Bornholm Deep is characterised with the highest concentration of CWAs in sediments, but occasional concentration peaks are also observed in the Gdansk Deep and close to dispersed munitions. Detailed investigation of spreading pattern show that the range of pollution depends on bottom currents and topography.}, + abstract = {About 50 000 tons of chemical weapons (CW) were dumped to the Baltic Sea after the Second World War. Munitions are located in the deep areas of the Baltic Sea, and there they act as a point source of contamination to the ecosystem. Corroded munitions release chemical warfare agents (CWAs) to nearby water and sediments. In this study we investigated known dumpsites (Bornholm, Gotland and Gdansk Deep) and dispersed chemical munitions, to evaluate the extent of contamination of nearby sediments, as well as to assess the degradation process of released CWA. It was found that CWA-related phenylarsenic chemicals (Clark I, Clark II and Adamsite) and sulfur mustard are released to the sediments and undergo environmental degradation to chemicals, of which some remain toxic. The extent of pollution of released CWAs and their corresponding degradation products reaches more than 250 m from the CW objects, and seem to follow a power curve decrease of concentration from the source. Bornholm Deep is characterised with the highest concentration of CWAs in sediments, but occasional concentration peaks are also observed in the Gdansk Deep and close to dispersed munitions. Detailed investigation of spreading pattern show that the range of pollution depends on bottom currents and topography.}, keywords = {Sea-dumping Chemical weapons Chemical warfare agents @@ -23063,7 +23107,7 @@ Sediments}, volume = {224}, number = {6}, pages = {1596}, - abstract = {The objective of this study is to investigate the potential impact of future climate change on ozone air quality in Europe. To provide a full assessment, simulations with the global chemical transport model GEOS-CHEM driven by the NASA Goddard Institute for Space Studies general circulation model (NASA/GISS GCM) are conducted. To isolate the effects from changes in climate and anthropogenic emissions four types of simulations are performed: (1) present-day climate and emissions (2) future climate following the IPCC Special Report on Emission Scenarios (SRES) A1B scenario and present-day anthropogenic emissions of ozone precursors (3) present-day climate and future emissions and (4) future climate and future emissions. Results indicate that climate change impact on its own leads to an increase of less than 3 ppb in western and central Europe whereas decreases are evident for the rest of the areas with the highest (about 2.5 ppb) in southeastern Europe (Italy, Greece). Increases are attributed to the increases of isoprene biogenic emissions due to increasing temperatures whereas decreases are associated with the increase of water vapor over sea which tends to decrease the lifetime of ozone as well as the increased wind speeds in the 2050 climate. When future emissions are implemented in the future climate simulations, the greatest increases are seen in the southwest and southeast Mediterranean (about 16 ppb) due to the increased isoprene biogenic emissions under higher levels of NOxin the model. Decreases up to 2 ppb of ozone are shown for France, Switzerland, Northern Italy and northern Europe.}, + abstract = {The objective of this study is to investigate the potential impact of future climate change on ozone air quality in Europe. To provide a full assessment, simulations with the global chemical transport model GEOS-CHEM driven by the NASA Goddard Institute for Space Studies general circulation model (NASA/GISS GCM) are conducted. To isolate the effects from changes in climate and anthropogenic emissions four types of simulations are performed: (1) present-day climate and emissions (2) future climate following the IPCC Special Report on Emission Scenarios (SRES) A1B scenario and present-day anthropogenic emissions of ozone precursors (3) present-day climate and future emissions and (4) future climate and future emissions. Results indicate that climate change impact on its own leads to an increase of less than 3 ppb in western and central Europe whereas decreases are evident for the rest of the areas with the highest (about 2.5 ppb) in southeastern Europe (Italy, Greece). Increases are attributed to the increases of isoprene biogenic emissions due to increasing temperatures whereas decreases are associated with the increase of water vapor over sea which tends to decrease the lifetime of ozone as well as the increased wind speeds in the 2050 climate. When future emissions are implemented in the future climate simulations, the greatest increases are seen in the southwest and southeast Mediterranean (about 16 ppb) due to the increased isoprene biogenic emissions under higher levels of NOxin the model. Decreases up to 2 ppb of ozone are shown for France, Switzerland, Northern Italy and northern Europe.}, ISSN = {1573-2932}, DOI = {https://doi.org/10.1007/s11270-013-1596-z}, url = {https://doi.org/10.1007/s11270-013-1596-z}, @@ -23156,7 +23200,7 @@ Sediments}, volume = {477}, pages = {231-250}, note = {10.3354/meps10169}, - abstract = {ABSTRACT: We evaluated the distribution and the extent of sea-spawning whitefish Coregonus lavaretus (L.) s.l. and vendace Coregonus albula larval areas in the Gulf of Bothnia, northern Baltic Sea, and suggest that the distribution of the reproduction areas could be an indicator of the health of the Baltic Sea shores. Our Geographic Information System (GIS) based predictive spatial model of habitat selection covers nearly the whole distribution area of both species. Extensive sampling data on larval occurrence were combined with GIS raster layers on environmental variables and used in a Gaussian process model, which predicts the spatial probability of larval occurrence. Out of 22 studied variables, shore profile, distance to sandy shallow shore, distance to 20 m depth contour line and ice break-up week were the most important for describing larval areas of both species. The earliest larval stages of sea-spawning whitefish can be found in various habitats close to the shoreline, but the highest densities of larvae were observed along gently sloping, shallow sandy shores. Vendace reproduction occurs in the northernmost and less saline areas of the Bothnian Bay and larval stages use the shallow areas. Compared to previous studies from 1990s, the extent of whitefish larval areas has decreased. We discuss the possibility that long-term changes in the environment, such as more frequent iceless winters and increasing eutrophication, have reduced the reproductive success of sea-spawning coregonids. Larval distribution maps can be used to focus conservation measures in the most appropriate places. We propose to use this method as a monitoring tool, and produce maps to assist integrated coastal zone management and environmental protection}, + abstract = {ABSTRACT: We evaluated the distribution and the extent of sea-spawning whitefish Coregonus lavaretus (L.) s.l. and vendace Coregonus albula larval areas in the Gulf of Bothnia, northern Baltic Sea, and suggest that the distribution of the reproduction areas could be an indicator of the health of the Baltic Sea shores. Our Geographic Information System (GIS) based predictive spatial model of habitat selection covers nearly the whole distribution area of both species. Extensive sampling data on larval occurrence were combined with GIS raster layers on environmental variables and used in a Gaussian process model, which predicts the spatial probability of larval occurrence. Out of 22 studied variables, shore profile, distance to sandy shallow shore, distance to 20 m depth contour line and ice break-up week were the most important for describing larval areas of both species. The earliest larval stages of sea-spawning whitefish can be found in various habitats close to the shoreline, but the highest densities of larvae were observed along gently sloping, shallow sandy shores. Vendace reproduction occurs in the northernmost and less saline areas of the Bothnian Bay and larval stages use the shallow areas. Compared to previous studies from 1990s, the extent of whitefish larval areas has decreased. We discuss the possibility that long-term changes in the environment, such as more frequent iceless winters and increasing eutrophication, have reduced the reproductive success of sea-spawning coregonids. Larval distribution maps can be used to focus conservation measures in the most appropriate places. We propose to use this method as a monitoring tool, and produce maps to assist integrated coastal zone management and environmental protection}, DOI = {https://doi.org/10.3354/meps10169}, url = {https://www.int-res.com/abstracts/meps/v477/p231-250/}, year = {2013}, @@ -23196,7 +23240,7 @@ Sediments}, volume = {93}, number = {9}, pages = {1759-1779}, - abstract = {We present the official land uplift model NKG2016LU of the Nordic Commission of Geodesy (NKG) for northern Europe. The model was released in 2016 and covers an area from 49° to 75° latitude and 0° to 50° longitude. It shows a maximum absolute uplift of 10.3 mm/a near the city of Umeå in northern Sweden anda zero-line that follows the shores of Germany and Poland. The model replaces the NKG2005LU model from 2005. Since then, we have collected more data in the core areas of NKG2005LU, specifically in Norway, Sweden, Denmark and Finland, and included observations from the Baltic countries as well. Additionally, we have derived an underlying geophysical glacial isostatic adjustment (GIA) model within NKG as an integrated part of the NKG2016LU project. A major challenge is to estimate a realistic uncertainty grid for the model. We show how the errors in the observations and the underlying GIA model propagate through the calculations to the final uplift model. We find a standard error better than 0.25 mm/a for most of the area covered by precise levelling or uplift rates from Continuously Operating Reference Stations and up to 0.7 mm/a outside this area. As a check, we show that two different methods give approximately the same uncertainty estimates. We also estimate changes in the geoid and derive an alternative uplift model referring to this rising geoid. Using this latter model, the maximum uplift in Umeå reduces from 10.3 to 9.6 mm/a and with a similar reduction ratio elsewhere. When we compare this new NKG2016LU with the former NKG2005LU, we find the largest differences where the GIA model has the strongest influence, i.e. outside the area of geodetic observation. Here, the new model gives from − 3 to 4 mm/a larger values. Within the observation area, similar differences reach − 1.5 mm/a at the northernmost part of Norway and − 1.0 mm/a at the north-western coast of Denmark, but generally within the range of − 0.5 to 0.5 mm/a.}, + abstract = {We present the official land uplift model NKG2016LU of the Nordic Commission of Geodesy (NKG) for northern Europe. The model was released in 2016 and covers an area from 49° to 75° latitude and 0° to 50° longitude. It shows a maximum absolute uplift of 10.3 mm/a near the city of Umeå in northern Sweden anda zero-line that follows the shores of Germany and Poland. The model replaces the NKG2005LU model from 2005. Since then, we have collected more data in the core areas of NKG2005LU, specifically in Norway, Sweden, Denmark and Finland, and included observations from the Baltic countries as well. Additionally, we have derived an underlying geophysical glacial isostatic adjustment (GIA) model within NKG as an integrated part of the NKG2016LU project. A major challenge is to estimate a realistic uncertainty grid for the model. We show how the errors in the observations and the underlying GIA model propagate through the calculations to the final uplift model. We find a standard error better than 0.25 mm/a for most of the area covered by precise levelling or uplift rates from Continuously Operating Reference Stations and up to 0.7 mm/a outside this area. As a check, we show that two different methods give approximately the same uncertainty estimates. We also estimate changes in the geoid and derive an alternative uplift model referring to this rising geoid. Using this latter model, the maximum uplift in Umeå reduces from 10.3 to 9.6 mm/a and with a similar reduction ratio elsewhere. When we compare this new NKG2016LU with the former NKG2005LU, we find the largest differences where the GIA model has the strongest influence, i.e. outside the area of geodetic observation. Here, the new model gives from − 3 to 4 mm/a larger values. Within the observation area, similar differences reach − 1.5 mm/a at the northernmost part of Norway and − 1.0 mm/a at the north-western coast of Denmark, but generally within the range of − 0.5 to 0.5 mm/a.}, ISSN = {1432-1394}, DOI = {https://doi.org/10.1007/s00190-019-01280-8}, url = {https://doi.org/10.1007/s00190-019-01280-8}, @@ -23304,7 +23348,7 @@ https://esd.copernicus.org/preprints/esd-2021-73/esd-2021-73.pdf}, journal = {Estuarine, Coastal and Shelf Science}, volume = {246}, pages = {107019}, - abstract = {Cultivation of extractive species, such as bivalves and seaweeds, provides opportunities for food production while removing excess nutrients in eutrophic coastal waters. However, to optimize these ecosystem services, selecting aquaculture sites that affect growth and nutrient uptake is important. In a transplant experiment we assessed spatial growth patterns of the blue mussel Mytilus edulis and the kelp Saccharina latissima, which were used to estimate nutrient removal. Optimal locations for growth and nutrient extraction differed, mussels grew better in relatively sheltered inner coastal areas, whereas seaweed growth increased in outer more exposed coastal areas. Estimates of mitigatory capacity indicated that under the best available conditions, mussels remove approximately 700 kg N and 6600 kg C ha−1yr−1, whereas seaweed removes approximately 100 kg N and 1000 kg C ha−1yr−1. We identified the importance of site selection for the overall capacity of two extractive species (bivalves and seaweeds) in order to synergistically maximise their growth and nutrient mitigation.}, + abstract = {Cultivation of extractive species, such as bivalves and seaweeds, provides opportunities for food production while removing excess nutrients in eutrophic coastal waters. However, to optimize these ecosystem services, selecting aquaculture sites that affect growth and nutrient uptake is important. In a transplant experiment we assessed spatial growth patterns of the blue mussel Mytilus edulis and the kelp Saccharina latissima, which were used to estimate nutrient removal. Optimal locations for growth and nutrient extraction differed, mussels grew better in relatively sheltered inner coastal areas, whereas seaweed growth increased in outer more exposed coastal areas. Estimates of mitigatory capacity indicated that under the best available conditions, mussels remove approximately 700 kg N and 6600 kg C ha−1yr−1, whereas seaweed removes approximately 100 kg N and 1000 kg C ha−1yr−1. We identified the importance of site selection for the overall capacity of two extractive species (bivalves and seaweeds) in order to synergistically maximise their growth and nutrient mitigation.}, keywords = {Aquaculture Blue mussels Kelp @@ -23482,7 +23526,7 @@ Site selection}, volume = {47}, number = {9}, pages = {3171-3190}, - abstract = {Storm surges are an important coastal hazard component and it is unknown how they will evolve along Europe’s coastline in view of climate change. In the present contribution, the hydrodynamic model Delft3D-Flow was forced by surface wind and atmospheric pressure fields from a 8-member climate model ensemble in order to evaluate dynamics in storm surge levels (SSL) along the European coastline (1) for the baseline period 1970–2000; and (2) during this century under the Representative Concentration Pathways RCP4.5 and RCP8.5. Validation simulations, spanning from 2008 to 2014 and driven by ERA-Interim atmospheric forcing, indicated good predictive skill (0.06 m < RMSE < 0.29 m and 10 % < RMSE < 29 % for 110 tidal gauge stations across Europe). Peak-over-threshold extreme value analysis was applied to estimate SSL values for different return periods, and changes of future SSL were obtained from all models to obtain the final ensemble. Values for most scenarios and return periods indicate a projected increase in SSL at several locations along the North European coastline, which is more prominent for RCP8.5 and shows an increasing tendency towards the end of the century for both RCP4.5 and RCP8.5. Projected SSL changes along the European coastal areas south of 50°N show minimal change or even a small decrease, with the exception of RCP8.5 under which a moderate increase is projected towards the end of the century. The present findings indicate that the anticipated increase in extreme total water levels due to relative sea level rise (RSLR), can be further enforced by an increase of the extreme SSL, which can exceed 30 % of the RSLR, especially for the high return periods and pathway RCP8.5. This implies that the combined effect could increase even further anticipated impacts of climate change for certain European areas and highlights the necessity for timely coastal adaptation and protection measures. The dataset is publicly available under this link: http://data.jrc.ec.europa.eu/collection/LISCOAST.}, + abstract = {Storm surges are an important coastal hazard component and it is unknown how they will evolve along Europe’s coastline in view of climate change. In the present contribution, the hydrodynamic model Delft3D-Flow was forced by surface wind and atmospheric pressure fields from a 8-member climate model ensemble in order to evaluate dynamics in storm surge levels (SSL) along the European coastline (1) for the baseline period 1970–2000; and (2) during this century under the Representative Concentration Pathways RCP4.5 and RCP8.5. Validation simulations, spanning from 2008 to 2014 and driven by ERA-Interim atmospheric forcing, indicated good predictive skill (0.06 m < RMSE < 0.29 m and 10 % < RMSE < 29 % for 110 tidal gauge stations across Europe). Peak-over-threshold extreme value analysis was applied to estimate SSL values for different return periods, and changes of future SSL were obtained from all models to obtain the final ensemble. Values for most scenarios and return periods indicate a projected increase in SSL at several locations along the North European coastline, which is more prominent for RCP8.5 and shows an increasing tendency towards the end of the century for both RCP4.5 and RCP8.5. Projected SSL changes along the European coastal areas south of 50°N show minimal change or even a small decrease, with the exception of RCP8.5 under which a moderate increase is projected towards the end of the century. The present findings indicate that the anticipated increase in extreme total water levels due to relative sea level rise (RSLR), can be further enforced by an increase of the extreme SSL, which can exceed 30 % of the RSLR, especially for the high return periods and pathway RCP8.5. This implies that the combined effect could increase even further anticipated impacts of climate change for certain European areas and highlights the necessity for timely coastal adaptation and protection measures. The dataset is publicly available under this link: http://data.jrc.ec.europa.eu/collection/LISCOAST.}, ISSN = {1432-0894}, DOI = {https://doi.org/10.1007/s00382-016-3019-5}, url = {https://doi.org/10.1007/s00382-016-3019-5}, @@ -23591,13 +23635,13 @@ Water temperature}, } @article{Wang2017-2, - author = {Wang, Jianglin and Yang, Bao and Ljungqvist, Fredrik Charpentier and Luterbacher, Jürg and Osborn, Timothy J and Briffa, Keith R. and Zorita, Eduardo}, - title = {Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years}, + author = {Wang, Jianglin and Yang, Bao and Ljungqvist, Fredrik Charpentier and Luterbacher, Jürg and Osborn, Timothy J and Briffa, Keith R. and Zorita, Eduardo}, + title = {Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years}, journal = {Nature Geoscience}, volume = {10}, number = {7}, pages = {512-517}, - abstract = {The North Atlantic experiences climate variability on multidecadal scales, which is sometimes referred to as Atlantic multidecadal variability. However, the relative contributions of external forcing such as changes in solar irradiance or volcanic activity and internal dynamics to these variations are unclear. Here we provide evidence for persistent summer Atlantic multidecadal variability from AD 800 to 2010 using a network of annually resolved terrestrial proxy records from the circum-North Atlantic region. We find that large volcanic eruptions and solar irradiance minima induce cool phases of Atlantic multidecadal variability and collectively explain about 30% of the variance in the reconstruction on timescales greater than 30 years. We are then able to isolate the internally generated component of Atlantic multidecadal variability, which we define as the Atlantic multidecadal oscillation. We find that the Atlantic multidecadal oscillation is the largest contributor to Atlantic multidecadal variability over the past 1,200 years. We also identify coherence between the Atlantic multidecadal oscillation and Northern Hemisphere temperature variations, leading us to conclude that the apparent link between Atlantic multidecadal variability and regional to hemispheric climate does not arise solely from a common response to external drivers, and may instead reflect dynamic processes.}, + abstract = {The North Atlantic experiences climate variability on multidecadal scales, which is sometimes referred to as Atlantic multidecadal variability. However, the relative contributions of external forcing such as changes in solar irradiance or volcanic activity and internal dynamics to these variations are unclear. Here we provide evidence for persistent summer Atlantic multidecadal variability from AD 800 to 2010 using a network of annually resolved terrestrial proxy records from the circum-North Atlantic region. We find that large volcanic eruptions and solar irradiance minima induce cool phases of Atlantic multidecadal variability and collectively explain about 30% of the variance in the reconstruction on timescales greater than 30 years. We are then able to isolate the internally generated component of Atlantic multidecadal variability, which we define as the Atlantic multidecadal oscillation. We find that the Atlantic multidecadal oscillation is the largest contributor to Atlantic multidecadal variability over the past 1,200 years. We also identify coherence between the Atlantic multidecadal oscillation and Northern Hemisphere temperature variations, leading us to conclude that the apparent link between Atlantic multidecadal variability and regional to hemispheric climate does not arise solely from a common response to external drivers, and may instead reflect dynamic processes.}, ISSN = {1752-0908}, DOI = {https://doi.org/10.1038/ngeo2962}, url = {https://doi.org/10.1038/ngeo2962}, @@ -23735,11 +23779,11 @@ Baltic Sea (10°E 54°N) (21°E 58°N)}, @article{Watson2016, author = {Watson, Laura and Lacressonnière, Gwendoline and Gauss, Michael and Engardt, Magnuz and Andersson, Camilla and Josse, Béatrice and Marécal, Virginie and Nyiri, Agnes and Sobolowski, Stefan and Siour, Guillaume and Szopa, Sophie and Vautard, Robert}, - title = {Impact of emissions and +2 °C climate change upon future ozone and nitrogen dioxide over Europe}, + title = {Impact of emissions and +2 °C climate change upon future ozone and nitrogen dioxide over Europe}, journal = {Atmospheric Environment}, volume = {142}, pages = {271-285}, - abstract = {The evolution of ozone and nitrogen dioxide over Europe between the present day and a future period with a +2 °C global warming relative to the pre-industrial climate was studied using four offline chemistry transport models, each driven by a different climate model. Given the recent outcome of the COP21 negotiations, understanding the implications of climate change around the +2 °C threshold has never been more pressing or relevant. One of the objectives of this study was to show how changes in anthropogenic emissions and +2 °C climate change are expected to affect future air quality, which may have important implications upon human health. It was found that a +2 °C climate change alone was responsible for a modest, and not statistically significant, increase in surface O3 concentrations (of between −0.1–0.8 ppb in the summer averaged over the European domain) compared to the present climate. Two different emission scenarios were used for the future time period in order to provide an estimate of the extent of air pollution reductions that could occur if (a) all currently planned air quality legislation is implemented and (b) all maximum technologically feasible emission reductions are implemented. The results showed that summer O3 could be reduced by between 4 and 5 ppb under a current legislation scenario, with at least 3 ppb of further reductions under the maximum mitigated scenario. Calculations of summer ozone enhancement were used as a metric to analyse the results after having removed background ozone level changes. In conclusion it was found that future air quality on a regional scale will depend upon the implementation of effective emission reduction policy; the positive effects of which should not be hindered by a +2 °C global warming.}, + abstract = {The evolution of ozone and nitrogen dioxide over Europe between the present day and a future period with a +2 °C global warming relative to the pre-industrial climate was studied using four offline chemistry transport models, each driven by a different climate model. Given the recent outcome of the COP21 negotiations, understanding the implications of climate change around the +2 °C threshold has never been more pressing or relevant. One of the objectives of this study was to show how changes in anthropogenic emissions and +2 °C climate change are expected to affect future air quality, which may have important implications upon human health. It was found that a +2 °C climate change alone was responsible for a modest, and not statistically significant, increase in surface O3 concentrations (of between −0.1–0.8 ppb in the summer averaged over the European domain) compared to the present climate. Two different emission scenarios were used for the future time period in order to provide an estimate of the extent of air pollution reductions that could occur if (a) all currently planned air quality legislation is implemented and (b) all maximum technologically feasible emission reductions are implemented. The results showed that summer O3 could be reduced by between 4 and 5 ppb under a current legislation scenario, with at least 3 ppb of further reductions under the maximum mitigated scenario. Calculations of summer ozone enhancement were used as a metric to analyse the results after having removed background ozone level changes. In conclusion it was found that future air quality on a regional scale will depend upon the implementation of effective emission reduction policy; the positive effects of which should not be hindered by a +2 °C global warming.}, keywords = {Air quality Ozone Climate change @@ -23899,7 +23943,7 @@ IMPACT2C}, volume = {140}, number = {5}, pages = {991-999}, - abstract = {The blue mussel, Mytilus edulis, is the most conspicuous animal species in the northern Baltic rocky sublittoral. In the studied area the species lives at the margin of its salinity tolerance. Although dwarfed by the low-salinity conditions, blue mussels in the northern Baltic are very abundant and have a decisive role in the benthic and pelagic ecosystems. We studied abundance, size distribution, biomass and growth rate of blue mussels along a 270 km salinity gradient in the northern Baltic Sea. Samples (n=317, 1998–1999) from moderately exposed and exposed rocky shores at seven study areas were collected in the southern Archipelago Sea in the west and into the central Gulf of Finland in the east, where the species is becoming increasingly rare. The results show a marked decline in mean mussel size and biomass from the saline west to the less saline east. The growth rate also decreased with lower ambient salinity. However, abundance of small mussels was considerably higher in the central and eastern parts of the study area. Vertically, the highest biomass was recorded at intermediate depths (5 and 8 m), being lower at both shallower (3 m) and deeper bottoms (12 m). It is concluded that salinity is the foremost factor determining size structure and growth rate among populations within the area. The results suggest that predation further influences the population structure of blue mussels living at the edge of their range in the central Gulf of Finland ultimately set by their salinity tolerance.}, + abstract = {The blue mussel, Mytilus edulis, is the most conspicuous animal species in the northern Baltic rocky sublittoral. In the studied area the species lives at the margin of its salinity tolerance. Although dwarfed by the low-salinity conditions, blue mussels in the northern Baltic are very abundant and have a decisive role in the benthic and pelagic ecosystems. We studied abundance, size distribution, biomass and growth rate of blue mussels along a 270 km salinity gradient in the northern Baltic Sea. Samples (n=317, 1998–1999) from moderately exposed and exposed rocky shores at seven study areas were collected in the southern Archipelago Sea in the west and into the central Gulf of Finland in the east, where the species is becoming increasingly rare. The results show a marked decline in mean mussel size and biomass from the saline west to the less saline east. The growth rate also decreased with lower ambient salinity. However, abundance of small mussels was considerably higher in the central and eastern parts of the study area. Vertically, the highest biomass was recorded at intermediate depths (5 and 8 m), being lower at both shallower (3 m) and deeper bottoms (12 m). It is concluded that salinity is the foremost factor determining size structure and growth rate among populations within the area. The results suggest that predation further influences the population structure of blue mussels living at the edge of their range in the central Gulf of Finland ultimately set by their salinity tolerance.}, ISSN = {1432-1793}, DOI = {https://doi.org/10.1007/s00227-001-0765-6}, url = {https://doi.org/10.1007/s00227-001-0765-6}, @@ -23996,7 +24040,7 @@ Population decline}, volume = {18}, number = {8}, pages = {2509-2519}, - abstract = {Abstract Increased precipitation is one projected outcome of climate change that may enhance the discharge of freshwater to the coastal zone. The resulting lower salinity, and associated discharge of both nutrients and dissolved organic carbon, may influence food web functioning. The scope of this study was to determine the net outcome of increased freshwater discharge on the balance between auto- and heterotrophic processes in the coastal zone. By using long-term ecological time series data covering 13 years, we show that increased river discharge suppresses phytoplankton biomass production and shifts the carbon flow towards microbial heterotrophy. A 76% increase in freshwater discharge resulted in a 2.2 times higher ratio of bacterio- to phytoplankton production (Pb:Pp). The level of Pb:Pp is a function of riverine total organic carbon supply to the coastal zone. This is mainly due to the negative effect of freshwater and total organic carbon discharge on phytoplankton growth, despite a concomitant increase in discharge of nitrogen and phosphorus. With a time lag of 2 years the bacterial production recovered after an initial decline, further synergistically elevating the microbial heterotrophy. Current climate change projections suggesting increased precipitation may therefore lead to increased microbial heterotrophy, thereby decreasing the transfer efficiency of biomass to higher trophic levels. This prognosis would suggest reduced fish production and lower sedimentation rates of phytoplankton, a factor of detriment to benthic fauna. Our findings show that discharge of freshwater and total organic carbon significantly contributes to the balance of coastal processes at large spatial and temporal scales, and that model's would be greatly augmented by the inclusion of these environmental drivers as regulators of coastal productivity.}, + abstract = {Abstract Increased precipitation is one projected outcome of climate change that may enhance the discharge of freshwater to the coastal zone. The resulting lower salinity, and associated discharge of both nutrients and dissolved organic carbon, may influence food web functioning. The scope of this study was to determine the net outcome of increased freshwater discharge on the balance between auto- and heterotrophic processes in the coastal zone. By using long-term ecological time series data covering 13 years, we show that increased river discharge suppresses phytoplankton biomass production and shifts the carbon flow towards microbial heterotrophy. A 76% increase in freshwater discharge resulted in a 2.2 times higher ratio of bacterio- to phytoplankton production (Pb:Pp). The level of Pb:Pp is a function of riverine total organic carbon supply to the coastal zone. This is mainly due to the negative effect of freshwater and total organic carbon discharge on phytoplankton growth, despite a concomitant increase in discharge of nitrogen and phosphorus. With a time lag of 2 years the bacterial production recovered after an initial decline, further synergistically elevating the microbial heterotrophy. Current climate change projections suggesting increased precipitation may therefore lead to increased microbial heterotrophy, thereby decreasing the transfer efficiency of biomass to higher trophic levels. This prognosis would suggest reduced fish production and lower sedimentation rates of phytoplankton, a factor of detriment to benthic fauna. Our findings show that discharge of freshwater and total organic carbon significantly contributes to the balance of coastal processes at large spatial and temporal scales, and that model's would be greatly augmented by the inclusion of these environmental drivers as regulators of coastal productivity.}, ISSN = {1354-1013}, DOI = {https://doi.org/10.1111/j.1365-2486.2012.02718.x}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2012.02718.x}, @@ -24040,7 +24084,7 @@ Simulation}, @article{Wild2017, author = {Wild, M. and Ohmura, A. and Schär, C. and Müller, G. and Folini, D. and Schwarz, M. and Hakuba, M. Z. and Sanchez-Lorenzo, A.}, - title = {The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes}, + title = {The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes}, journal = {Earth System Science Data}, volume = {9}, number = {2}, @@ -24284,13 +24328,13 @@ Conservation}, } @article{Wisniewska2016, - author = {Wisniewska, Danuta Maria and Johnson, Mark and Teilmann, Jonas and Rojano-Doñate, Laia and Shearer, Jeanne and Sveegaard, Signe and Miller, Lee A and Siebert, Ursula and Madsen, Peter Teglberg}, + author = {Wisniewska, Danuta Maria and Johnson, Mark and Teilmann, Jonas and Rojano-Doñate, Laia and Shearer, Jeanne and Sveegaard, Signe and Miller, Lee A and Siebert, Ursula and Madsen, Peter Teglberg}, title = {Ultra-High Foraging Rates of Harbor Porpoises Make Them Vulnerable to Anthropogenic Disturbance}, journal = {Current Biology}, volume = {26}, number = {11}, pages = {1441-1446}, - abstract = {Summary The question of how individuals acquire and allocate resources to maximize fitness is central in evolutionary ecology. Basic information on prey selection, search effort, and capture rates are critical for understanding a predator’s role in its ecosystem and for predicting its response to natural and anthropogenic disturbance. Yet, for most marine species, foraging interactions cannot be observed directly. The high costs of thermoregulation in water require that small marine mammals have elevated energy intakes compared to similar-sized terrestrial mammals [1]. The combination of high food requirements and their position at the apex of most marine food webs may make small marine mammals particularly vulnerable to changes within the ecosystem [2, 3, 4], but the lack of detailed information about their foraging behavior often precludes an informed conservation effort. Here, we use high-resolution movement and prey echo recording tags on five wild harbor porpoises to examine foraging interactions in one of the most metabolically challenged cetacean species. We report that porpoises forage nearly continuously day and night, attempting to capture up to 550 small (3–10 cm) fish prey per hour with a remarkable prey capture success rate of >90%. Porpoises therefore target fish that are smaller than those of commercial interest, but must forage almost continually to meet their metabolic demands with such small prey, leaving little margin for compensation. Thus, for these “aquatic shrews,” even a moderate level of anthropogenic disturbance in the busy shallow waters they share with humans may have severe fitness consequences at individual and population levels.}, + abstract = {Summary The question of how individuals acquire and allocate resources to maximize fitness is central in evolutionary ecology. Basic information on prey selection, search effort, and capture rates are critical for understanding a predator’s role in its ecosystem and for predicting its response to natural and anthropogenic disturbance. Yet, for most marine species, foraging interactions cannot be observed directly. The high costs of thermoregulation in water require that small marine mammals have elevated energy intakes compared to similar-sized terrestrial mammals [1]. The combination of high food requirements and their position at the apex of most marine food webs may make small marine mammals particularly vulnerable to changes within the ecosystem [2, 3, 4], but the lack of detailed information about their foraging behavior often precludes an informed conservation effort. Here, we use high-resolution movement and prey echo recording tags on five wild harbor porpoises to examine foraging interactions in one of the most metabolically challenged cetacean species. We report that porpoises forage nearly continuously day and night, attempting to capture up to 550 small (3–10 cm) fish prey per hour with a remarkable prey capture success rate of >90%. Porpoises therefore target fish that are smaller than those of commercial interest, but must forage almost continually to meet their metabolic demands with such small prey, leaving little margin for compensation. Thus, for these “aquatic shrews,” even a moderate level of anthropogenic disturbance in the busy shallow waters they share with humans may have severe fitness consequences at individual and population levels.}, ISSN = {0960-9822}, DOI = {https://doi.org/10.1016/j.cub.2016.03.069}, url = {http://www.sciencedirect.com/science/article/pii/S0960982216303141}, @@ -24300,7 +24344,7 @@ Conservation}, @article{Witte2010, author = {Witte, Sophia and Buschbaum, Christian and van Beusekom, Justus E. E. and Reise, Karsten}, - title = {Does climatic warming explain why an introduced barnacle finally takes over after a lag of more than 50 years?}, + title = {Does climatic warming explain why an introduced barnacle finally takes over after a lag of more than 50 years?}, journal = {Biological Invasions}, volume = {12}, number = {10}, @@ -24414,7 +24458,7 @@ Storm surges and falls}, volume = {161}, number = {10}, pages = {2423-2431}, - abstract = {Three populations of the grazing isopod Idotea balthica were exposed to high CO2 treatment for a period of 20 days to investigate the effect of ocean acidification (OA) on animal health and immunocompetence. The results of the populations from more saline habitats were comparable and showed a 60–80 % decrease in immune response as a result of the high CO2 treatment. Analysis of protein carbonyls showed no treatment effect, indicating that short-term OA does not increase oxidative protein damage. Meanwhile, the third tested population from the lower saline Baltic Sea had higher background protein carbonyl levels. Ocean acidification in addition to this resulted in 100 % mortality. The results of this study show that OA reduced immunocompetence of this marine isopod. In addition, populations and individuals in poor health are potentially at greater risk to succumb under OA.}, + abstract = {Three populations of the grazing isopod Idotea balthica were exposed to high CO2 treatment for a period of 20 days to investigate the effect of ocean acidification (OA) on animal health and immunocompetence. The results of the populations from more saline habitats were comparable and showed a 60–80 % decrease in immune response as a result of the high CO2 treatment. Analysis of protein carbonyls showed no treatment effect, indicating that short-term OA does not increase oxidative protein damage. Meanwhile, the third tested population from the lower saline Baltic Sea had higher background protein carbonyl levels. Ocean acidification in addition to this resulted in 100 % mortality. The results of this study show that OA reduced immunocompetence of this marine isopod. In addition, populations and individuals in poor health are potentially at greater risk to succumb under OA.}, ISSN = {1432-1793}, DOI = {https://doi.org/10.1007/s00227-014-2518-3}, url = {https://doi.org/10.1007/s00227-014-2518-3}, @@ -24547,7 +24591,7 @@ RCP2.6}, volume = {165}, number = {4}, pages = {63}, - abstract = {Helcom scenario modelling suggests that the Baltic Sea, one of the largest brackish-water bodies in the world, could expect increased precipitation (decreased salinity) and increased concentration of atmospheric CO2 over the next 100 years. These changes are expected to affect the microplanktonic food web, and thereby nutrient and carbon cycling, in a complex and possibly synergistic manner. In the Baltic Proper, the extensive summer blooms dominated by the filamentous cyanobacteria Aphanizomenon sp., Dolichospermum spp. and the toxic Nodularia spumigena contribute up to 30% of the yearly new nitrogen and carbon exported to the sediment. In a 12 days outdoor microcosm experiment, we tested the combined effects of decreased salinity (from 6 to 3) and elevated CO2 concentrations (380 and 960 µatm) on a natural summer microplanktonic community, focusing on diazotrophic filamentous cyanobacteria. Elevated pCO2 had no significant effects on the natural microplanktonic community except for higher biovolume of Dolichospermum spp. and lower biomass of heterotrophic bacteria. At the end of the experimental period, heterotrophic bacterial abundance was correlated to the biovolume of N. spumigena. Lower salinity significantly affected cyanobacteria together with biovolumes of dinoflagellates, diatoms, ciliates and heterotrophic bacteria, with higher biovolume of Dolichospermum spp. and lower biovolume of N. spumigena, dinoflagellates, diatoms, ciliates and heterotrophic bacteria in reduced salinity. Although the salinity effects on diatoms were apparent, they could not clearly be separated from the influence of inorganic nutrients. We found a clear diurnal cycle in photosynthetic activity and pH, but without significant treatment effects. The same diurnal pattern was also observed in situ (pCO2, pH). Thus, considering the Baltic Proper, we do not expect any dramatic effects of increased pCO2 in combination with decreased salinity on the microplanktonic food web. However, long-term effects of the experimental treatments need to be further studied, and indirect effects of the lower salinity treatments could not be ruled out. Our study adds one piece to the complicated puzzle to reveal the combined effects of increased pCO2 and reduced salinity levels on the Baltic microplanktonic community.}, + abstract = {Helcom scenario modelling suggests that the Baltic Sea, one of the largest brackish-water bodies in the world, could expect increased precipitation (decreased salinity) and increased concentration of atmospheric CO2 over the next 100 years. These changes are expected to affect the microplanktonic food web, and thereby nutrient and carbon cycling, in a complex and possibly synergistic manner. In the Baltic Proper, the extensive summer blooms dominated by the filamentous cyanobacteria Aphanizomenon sp., Dolichospermum spp. and the toxic Nodularia spumigena contribute up to 30% of the yearly new nitrogen and carbon exported to the sediment. In a 12 days outdoor microcosm experiment, we tested the combined effects of decreased salinity (from 6 to 3) and elevated CO2 concentrations (380 and 960 µatm) on a natural summer microplanktonic community, focusing on diazotrophic filamentous cyanobacteria. Elevated pCO2 had no significant effects on the natural microplanktonic community except for higher biovolume of Dolichospermum spp. and lower biomass of heterotrophic bacteria. At the end of the experimental period, heterotrophic bacterial abundance was correlated to the biovolume of N. spumigena. Lower salinity significantly affected cyanobacteria together with biovolumes of dinoflagellates, diatoms, ciliates and heterotrophic bacteria, with higher biovolume of Dolichospermum spp. and lower biovolume of N. spumigena, dinoflagellates, diatoms, ciliates and heterotrophic bacteria in reduced salinity. Although the salinity effects on diatoms were apparent, they could not clearly be separated from the influence of inorganic nutrients. We found a clear diurnal cycle in photosynthetic activity and pH, but without significant treatment effects. The same diurnal pattern was also observed in situ (pCO2, pH). Thus, considering the Baltic Proper, we do not expect any dramatic effects of increased pCO2 in combination with decreased salinity on the microplanktonic food web. However, long-term effects of the experimental treatments need to be further studied, and indirect effects of the lower salinity treatments could not be ruled out. Our study adds one piece to the complicated puzzle to reveal the combined effects of increased pCO2 and reduced salinity levels on the Baltic microplanktonic community.}, ISSN = {1432-1793}, DOI = {https://doi.org/10.1007/s00227-018-3321-3}, url = {https://doi.org/10.1007/s00227-018-3321-3}, @@ -24656,7 +24700,7 @@ RCP2.6}, journal = {Geophysical Research Letters}, volume = {39}, number = {17}, - abstract = {Long-term projections of global-ocean thermal expansion (GTE) and the dynamic sea level (DSL) change are analyzed with 34 new CMIP5 models and under three greenhouse-gas emission scenarios. Multi-model ensemble mean (MEM) and ensemble standard deviation are calculated to identify robust features and quantify uncertainty. While the MEM of GTE shows moderate difference by 2100, with magnitudes of 13, 18 and 28 cm in RCP2.6, RCP4.5 and RCP8.5, respectively, it increases and diverges significantly by 2300, with magnitudes of 21, 52 and 119 cm in the three scenarios. Model-to-model spread seems reduced in CMIP5 compared to CMIP3. The MEM changes of the DSL show similar patterns between different RCPs, but with progressively larger magnitudes in RCP2.6, RCP4.5 and RCP8.5. Notable features identified previously in the CMIP3 projections also occur in CMIP5, indicating their robustness across generations of climate model and emission scenario. The CMIP5 models still show disagreement in projecting the DSL changes, even under the same external forcing.}, + abstract = {Long-term projections of global-ocean thermal expansion (GTE) and the dynamic sea level (DSL) change are analyzed with 34 new CMIP5 models and under three greenhouse-gas emission scenarios. Multi-model ensemble mean (MEM) and ensemble standard deviation are calculated to identify robust features and quantify uncertainty. While the MEM of GTE shows moderate difference by 2100, with magnitudes of 13, 18 and 28 cm in RCP2.6, RCP4.5 and RCP8.5, respectively, it increases and diverges significantly by 2300, with magnitudes of 21, 52 and 119 cm in the three scenarios. Model-to-model spread seems reduced in CMIP5 compared to CMIP3. The MEM changes of the DSL show similar patterns between different RCPs, but with progressively larger magnitudes in RCP2.6, RCP4.5 and RCP8.5. Notable features identified previously in the CMIP3 projections also occur in CMIP5, indicating their robustness across generations of climate model and emission scenario. The CMIP5 models still show disagreement in projecting the DSL changes, even under the same external forcing.}, ISSN = {0094-8276}, DOI = {https://doi.org/10.1029/2012gl052947}, url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012GL052947}, @@ -24730,7 +24774,7 @@ RCP2.6}, volume = {13}, number = {8}, pages = {1739-1765}, - abstract = {This paper presents an overall bioinvasion impact assessment on the scale of a large marine region—the Baltic Sea, as defined by the Helsinki Commission. The methodology is based on a classification of the abundance and distribution range of alien species and the magnitude of their impacts on native communities, habitats and ecosystem functioning aggregated in a “Biopollution Level” index (BPL) which ranges from ‘no impact’ (BPL = 0) to ‘massive impact’ (BPL = 4). The assessment performed for nine Baltic sub-regions revealed that documented ecological impact is only known for 43 alien species out of 119 registered in the Sea. The highest biopollution (BPL = 3, strong impact) occurs in coastal lagoons, inlets and gulfs, and the moderate biopollution (BPL = 2)—in the open sea areas. The methodology was also used to classify species into alien (BPL = 0) versus ‘impacting’ species (BPL > 0), which can be divided into ‘potentially invasive’ (BPL = 1) and ‘invasive’ (BPL > 1) ones. No clear correlation between the number of established alien and impacting species was found in the sub-regions of the Baltic Sea. The methodology, although requiring a substantial research effort, proved to be useful for interregional comparisons and evaluating the bioinvasion effects of individual alien species.}, + abstract = {This paper presents an overall bioinvasion impact assessment on the scale of a large marine region—the Baltic Sea, as defined by the Helsinki Commission. The methodology is based on a classification of the abundance and distribution range of alien species and the magnitude of their impacts on native communities, habitats and ecosystem functioning aggregated in a “Biopollution Level” index (BPL) which ranges from ‘no impact’ (BPL = 0) to ‘massive impact’ (BPL = 4). The assessment performed for nine Baltic sub-regions revealed that documented ecological impact is only known for 43 alien species out of 119 registered in the Sea. The highest biopollution (BPL = 3, strong impact) occurs in coastal lagoons, inlets and gulfs, and the moderate biopollution (BPL = 2)—in the open sea areas. The methodology was also used to classify species into alien (BPL = 0) versus ‘impacting’ species (BPL > 0), which can be divided into ‘potentially invasive’ (BPL = 1) and ‘invasive’ (BPL > 1) ones. No clear correlation between the number of established alien and impacting species was found in the sub-regions of the Baltic Sea. The methodology, although requiring a substantial research effort, proved to be useful for interregional comparisons and evaluating the bioinvasion effects of individual alien species.}, ISSN = {1573-1464}, DOI = {https://doi.org/10.1007/s10530-010-9928-z}, url = {https://doi.org/10.1007/s10530-010-9928-z}, @@ -24821,7 +24865,7 @@ Accountability}, volume = {568}, number = {7752}, pages = {382-386}, - abstract = {Glaciers distinct from the Greenland and Antarctic ice sheets cover an area of approximately 706,000 square kilometres globally1, with an estimated total volume of 170,000 cubic kilometres, or 0.4 metres of potential sea-level-rise equivalent2. Retreating and thinning glaciers are icons of climate change3 and affect regional runoff4 as well as global sea level5,6. In past reports from the Intergovernmental Panel on Climate Change, estimates of changes in glacier mass were based on the multiplication of averaged or interpolated results from available observations of a few hundred glaciers by defined regional glacier areas7–10. For data-scarce regions, these results had to be complemented with estimates based on satellite altimetry and gravimetry11. These past approaches were challenged by the small number and heterogeneous spatiotemporal distribution of in situ measurement series and their often unknown ability to represent their respective mountain ranges, as well as by the spatial limitations of satellite altimetry (for which only point data are available) and gravimetry (with its coarse resolution). Here we use an extrapolation of glaciological and geodetic observations to show that glaciers contributed 27 ± 22 millimetres to global mean sea-level rise from 1961 to 2016. Regional specific-mass-change rates for 2006–2016 range from −0.1 metres to −1.2 metres of water equivalent per year, resulting in a global sea-level contribution of 335 ± 144 gigatonnes, or 0.92 ± 0.39 millimetres, per year. Although statistical uncertainty ranges overlap, our conclusions suggest that glacier mass loss may be larger than previously reported11. The present glacier mass loss is equivalent to the sea-level contribution of the Greenland Ice Sheet12, clearly exceeds the loss from the Antarctic Ice Sheet13, and accounts for 25 to 30 per cent of the total observed sea-level rise14. Present mass-loss rates indicate that glaciers could almost disappear in some mountain ranges in this century, while heavily glacierized regions will continue to contribute to sea-level rise beyond 2100.}, + abstract = {Glaciers distinct from the Greenland and Antarctic ice sheets cover an area of approximately 706,000 square kilometres globally1, with an estimated total volume of 170,000 cubic kilometres, or 0.4 metres of potential sea-level-rise equivalent2. Retreating and thinning glaciers are icons of climate change3 and affect regional runoff4 as well as global sea level5,6. In past reports from the Intergovernmental Panel on Climate Change, estimates of changes in glacier mass were based on the multiplication of averaged or interpolated results from available observations of a few hundred glaciers by defined regional glacier areas7–10. For data-scarce regions, these results had to be complemented with estimates based on satellite altimetry and gravimetry11. These past approaches were challenged by the small number and heterogeneous spatiotemporal distribution of in situ measurement series and their often unknown ability to represent their respective mountain ranges, as well as by the spatial limitations of satellite altimetry (for which only point data are available) and gravimetry (with its coarse resolution). Here we use an extrapolation of glaciological and geodetic observations to show that glaciers contributed 27 ± 22 millimetres to global mean sea-level rise from 1961 to 2016. Regional specific-mass-change rates for 2006–2016 range from −0.1 metres to −1.2 metres of water equivalent per year, resulting in a global sea-level contribution of 335 ± 144 gigatonnes, or 0.92 ± 0.39 millimetres, per year. Although statistical uncertainty ranges overlap, our conclusions suggest that glacier mass loss may be larger than previously reported11. The present glacier mass loss is equivalent to the sea-level contribution of the Greenland Ice Sheet12, clearly exceeds the loss from the Antarctic Ice Sheet13, and accounts for 25 to 30 per cent of the total observed sea-level rise14. Present mass-loss rates indicate that glaciers could almost disappear in some mountain ranges in this century, while heavily glacierized regions will continue to contribute to sea-level rise beyond 2100.}, ISSN = {1476-4687}, DOI = {https://doi.org/10.1038/s41586-019-1071-0}, url = {https://doi.org/10.1038/s41586-019-1071-0}, @@ -24920,7 +24964,7 @@ Southern Baltic Sea}, publisher = {Springer International Publishing}, address = {Cham}, pages = {107-135}, - abstract = {Coastal foredunes are developed as a result of interplay among multi-scale land-sea processes. Natural foredune ridges along the Świna Gate barrier coast (southern Baltic Sea) developed since 6000 cal. year BP provide an excellent laboratory to study the land-sea interaction under a medium- to long-term climatic control. In this paper we investigate several basic driving mechanisms of coastal foredune morphodynamics as well as natural environmental factors involved in shaping the foredune geometry by a numerical model. The model couples a process-based module for subaqueous sediment transport and a probabilistic-type module for subaerial aeolian sand transport and vegetation growth. After an evaluation of the model performance for a 61-year (1951–2012 AD) historical hindcast of the foredune development along a 1 km-long section of the Świna Gate barrier coast, the model is applied for a future projection of the same area to 2050 AD based on three different climate change scenarios. The climate change scenarios represent three different impact levels with regard to their capacity to shape the coastal morphology. Simulation results demonstrate a remarkable variability in foredune development even along a small (1 km) coast section, implying that the medium-term land-sea interaction and foredune morphodynamics is quite sensitive to boundary conditions and various processes acting on multi-temporal and spatial scales. Foredune morphodynamics such as migration, bifurcation, destruction and separation are determined by different combinations of storm frequency, onshore sediment supply rate and relative sea-level change. In contrast to a low rate of relative sea-level rise during the last few decades, an accelerated sea level-rise over the twenty-first century predicted by existing literature, would result in a dramatic and non-linear response from the foredune development according to our simulations.}, + abstract = {Coastal foredunes are developed as a result of interplay among multi-scale land-sea processes. Natural foredune ridges along the Świna Gate barrier coast (southern Baltic Sea) developed since 6000 cal. year BP provide an excellent laboratory to study the land-sea interaction under a medium- to long-term climatic control. In this paper we investigate several basic driving mechanisms of coastal foredune morphodynamics as well as natural environmental factors involved in shaping the foredune geometry by a numerical model. The model couples a process-based module for subaqueous sediment transport and a probabilistic-type module for subaerial aeolian sand transport and vegetation growth. After an evaluation of the model performance for a 61-year (1951–2012 AD) historical hindcast of the foredune development along a 1 km-long section of the Świna Gate barrier coast, the model is applied for a future projection of the same area to 2050 AD based on three different climate change scenarios. The climate change scenarios represent three different impact levels with regard to their capacity to shape the coastal morphology. Simulation results demonstrate a remarkable variability in foredune development even along a small (1 km) coast section, implying that the medium-term land-sea interaction and foredune morphodynamics is quite sensitive to boundary conditions and various processes acting on multi-temporal and spatial scales. Foredune morphodynamics such as migration, bifurcation, destruction and separation are determined by different combinations of storm frequency, onshore sediment supply rate and relative sea-level change. In contrast to a low rate of relative sea-level rise during the last few decades, an accelerated sea level-rise over the twenty-first century predicted by existing literature, would result in a dramatic and non-linear response from the foredune development according to our simulations.}, ISBN = {978-3-319-49894-2}, DOI = {https://doi.org/10.1007/978-3-319-49894-2_7}, url = {https://doi.org/10.1007/978-3-319-49894-2_7}, diff --git a/appendix/validation_report_CCLM_Eurocordex.pdf b/appendix/validation_report_CCLM_Eurocordex.pdf new file mode 100644 index 0000000..cfbc7f0 Binary files /dev/null and b/appendix/validation_report_CCLM_Eurocordex.pdf differ diff --git a/appendix/validation_report_MOM5_Baltic.pdf b/appendix/validation_report_MOM5_Baltic.pdf new file mode 100644 index 0000000..94cdce7 Binary files /dev/null and b/appendix/validation_report_MOM5_Baltic.pdf differ diff --git a/figures/MRMEVA02_and_grids.pdf b/figures/MRMEVA02_and_grids.pdf new file mode 100644 index 0000000..d2d8a47 Binary files /dev/null and b/figures/MRMEVA02_and_grids.pdf differ diff --git a/figures/MSTSUR02_and_grids.pdf b/figures/MSTSUR02_and_grids.pdf new file mode 100644 index 0000000..5acf79d Binary files /dev/null and b/figures/MSTSUR02_and_grids.pdf differ diff --git a/figures/critical_point.pdf b/figures/critical_point.pdf new file mode 100644 index 0000000..8887f3d Binary files /dev/null and b/figures/critical_point.pdf differ diff --git a/figures/flow-diagram.pdf b/figures/flow-diagram.pdf new file mode 100644 index 0000000..94f2cd5 Binary files /dev/null and b/figures/flow-diagram.pdf differ diff --git a/figures/flow-diagram.svg b/figures/flow-diagram.svg new file mode 100644 index 0000000..9f6397b --- /dev/null +++ b/figures/flow-diagram.svg @@ -0,0 +1,1627 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + image/svg+xml + + + + + + + + + + raw referencedata + rawmodeldata + + + + + + raw /model-specific + abstract /model-independent + SST.nc + SST.nc + remapping + process reference + process raw output + + + + + + + + seasonal mean + seasonal mean + SST-JJA.ncSST-DJF.nc + SST-JJA.ncSST-DJF.nc + compare seasonal means + SST.png + script.pynotebook.ipynb + + + + subtract + subtract + ΔSST-JJA.ncΔSST-DJF.nc + + + compare seasonal anomalies + script.pynotebook.ipynb + ΔSST.png + + + + + + + extract stations/regions + extract stations/regions + SST-BY5.nc + SST-BY5.nc + + + + + SST-BY5-monmean.ncSST-BY5-yearmean.nc + SST-BY5-monmean.ncSST-BY5-yearmean.nc + time-seriesoperator + time-seriesoperator + + script.pynotebook.ipynb + SST-stations.png + + + compare time series + + + create Taylor diagram/get cost function + + + script.pynotebook.ipynb + SST-stations.png + + + + + + create validation report + validation-reportas .ipynb, .md, .pdf + CDO analysis + Python plotting + + diff --git a/report.pdf b/report.pdf index 9ebf43d..89cbe0f 100644 Binary files a/report.pdf and b/report.pdf differ diff --git a/report.tex b/report.tex index eee9c69..d7eb75d 100644 --- a/report.tex +++ b/report.tex @@ -26,6 +26,7 @@ } \usepackage{lipsum} +\usepackage{pdfpages} \include{accronyms} @@ -401,97 +402,68 @@ The employed analysis is described in detail in the following and the resulting In order to judge the quality of the individual model runs the data has been compared to ERA5 reanalysis data. % -To examine the quality of the model the following quantities are examined. - -\subsection{Two-dimensional climatologies/anomalies} +This comparison has been implemented into an automatic post-processing procedure, that is depicted in \Fig{fig:flow-diagram}. +% +\begin{figure} + \centering + \includegraphics[width=0.8\textwidth]{"./figures/flow-diagram.pdf"} + \captionsetup{width=\linewidth} + \caption{\label{fig:flow-diagram}\textbf{Diagram for the data flow during automatized validation procedure.} The main data flow is from left to right. The arrows depict the particular flow of the data from one validation task to the next. The raw model/reference data (left column) is first pre-processed into a generic format (right column) and subsequently analyzed by \cdo\ operations (upper row). The figures are then plotted by Python tools (lower row) and compiled into a validation report (bottom).} +\end{figure} -As a first indicator for the model's accuracy, temporal means of two-dimensional surface variables $\langle \phi \rangle_S(x,y)$ are considered for different seasons $S$, i.e. +The reasoning of of the procedure is as follows. % -\begin{align} -\langle \phi \rangle_S(x,y) = \frac{1}{N_S} \sum_{t\in S} \phi(x,y,t), -\end{align} +First, the raw data of one model within the \esm\ as well as the chosen reference data are pre-processed such that all considered model variables are stored in files with the name of the model variable. % -where $t$ are all time steps that are contained in season $S$. The number of these time steps is given by $N_S$, where the considered time period is \ValidationTime. - -The corresponding two-dimensional seasonal anomaly $\langle \Delta \phi \rangle_S(x,y)$ with respect to a reference field $\phi_{\mathrm{ref}}(x,y,t)$ is then consequently +For instance the MOM variable \texttt{SST} (sea-surface temperature) is stored in file \texttt{SST.nc} that is the broadly used NetCDF~\cite{rew1990netcdf} format. % -\begin{align} - \langle \Delta \phi \rangle_S(x,y) & = \frac{1}{N_S} \sum_{t\in S} \phi(x,y,t) - \phi_{\mathrm{ref}}(x,y,t) \\ - & = \langle \phi \rangle_S(x,y) - \langle \phi_{\mathrm{ref}} \rangle_S(x,y) -\end{align} +The same step is applied to the reference data, where usually the variable is renamed such that it coincides with model's variable name. % -The smaller the magnitude of these anomalies are the better is the performance. - - -\subsection{Time series} - -In addition to the two-dimensional data also time series of model and reference data are compared. +Additionally other transformations can be applied such as unit conversion, multiplication by a factor, etc. % -The time series are considered at various coordinates where measurement stations are located as well as spatial means over certain regions. - -The stations and regions may be naturally different for the atmospheric and the ocean model, as it is depicted in \Fig{fig:stations-and-regions}. +Practically these steps are implemented as calls of the \cdo~\cite{schulzweida_uwe_2019_2558193} tool and can be configured via a configuration file that is described below. % -\begin{figure} - \centering - \begin{subfigure}[t]{0.45\textwidth} - \centering - \includegraphics[width=\linewidth]{"./data_figures/MOM5/latest/figures/draw_stations_and_regions/SST.png"} - \caption{\label{fig:stations-and-regions-MOM5} Stations and regions that are used for validation of the ocean component (\mom) of the \esm.} - \end{subfigure} - \hfill - \begin{subfigure}[t]{0.45\textwidth} - \centering - \includegraphics[width=\linewidth]{"./data_figures/CCLM/latest/figures/draw_stations_and_regions/T_2M_AV.png"} - \caption{\label{fig:stations-and-regions-CCLM} Stations and regions that are used for validation of the atmospheric component (\cclm) of the \esm.} - \end{subfigure} - \captionsetup{width=\linewidth} - \caption{\label{fig:stations-and-regions} - \textbf{Particularly analyzed domains of the ocean and atmospheric models.} - } -\end{figure} - - -\subsection{Taylor Diagrams} - -Since comparing time series by eye will only allow qualitative judgment of the model results, Taylor diagrams~\citesqr{taylor2001} are created for each of the above mentioned time series. +In order to calculate differences between model and reference data, the latter is automatically remapped onto the model's grid. +% +Note that not only ERA5 but also any other data that can be transformed in the described way would be a suitable reference. % -Taylor diagrams graphically indicate which of several model data represents best a given reference data. +Note further that the pre-processing might be very specific to the model/reference since usually different models/references feature different data formats. % -In order to quantify the degree of correspondence between the modeled and observed behavior, three statistical measures determine the diagram, i.e. the Pearson correlation coefficient, the \rmse, and the standard deviation. +However, after these very first pre-processing steps the model/reference data format is intended to be model-independent since only the variable's name is needed to perform the following analysis steps. % -Here both data, model and reference, consist of the same number of samples that correspond to a time series starting from \ValidationTime\ post-processed with different temporal means. +This generic data format avoids code duplication since all of the analysis and the plotting scripts can then be equally applied to different models within the \esm\ having different reference data. +The analysis and the plotting steps of validation procedure are configured in an own module implemented in the programming language Python~\cite{python3} via a so-called Python \textit{dictionary}. +% +Each model variable of interest is assigned to a key with the variable's name in that dictionary. +% +The value belonging to this key is a dictionary itself, that can contain the +\begin{itemize} +\item seasons for temporal means, i.e. a list months to be averaged over +\item stations defined by coordinates +\item regions defined by coordinates of a rectangle or a mask file that cuts the particular region from the data +\item temporal mean operations that can be applied to time series data and vertical profiles that are extracted for the stations and regions +\item file pattern to the reference data files that contain the corresponding reference variable +\item configuration for the plotting +\item long name and description of the variable +\end{itemize} -\subsection{Cost functions} - -The cost function $c$ as it is defined here, further summarizes the information given in a Taylor diagram. +The analysis is performed according to the configuration by Python scripts that mainly call \cdo\ routines. % -It measures the \rmse +In addition Taylor diagrams and cost functions are calculated for the time series data. % -\begin{align} -\epsilon = \sqrt{\frac{1}{N}\sum_{t=t_1}^{t_{N}} (\phi(t)-\phi_{\mathrm{ref}}(t))^2} -\end{align} +Importantly, all interim data that is produced during the analysis is stored in NetCDF files to ensure reproducibility of the figures. % -of the model data $\phi(t)$in units of the standard deviation $\sigma_{\mathrm{ref}}$ of reference data $\phi_{\mathrm{ref}}(t)$, i.e. -\begin{align} -c = \epsilon / \sigma_{\mathrm{ref}}. -\end{align} -Both data consist of $N$ samples corresponding to a time series starting from $t_1$ and ending at $t_N$, i.e. spanning a time of \ValidationTime. - - -\subsection{Vertical profiles} - -In order to go beyond the analysis of surface fields, vertical profiles of important ocean state variables are compared against observation data at particular stations. +Subsequently to the analysis, the results are plotted with the help of various Python libraries. % -The vertical profiles are generated from a four-dimensional field $\phi(x, y, z, t)$ at the chosen stations $\zeta$ (i.e. fixing $x = x_\zeta$ and $y = y_\zeta$ and using remapping to nearest neighbors) accompanied by performing the configured seasonal means for the aforementioned seasons $S$. +The actual plotting script for each figure is provided to the user in order to allow later customizations. % -In other words, the vertical profile for a station $\zeta$ and seasons $S$ is given by +The plots are then compiled into a single report that is either provided as a Markdown~\cite{markdown-guide} file, an interactive Jupyter Notebook~\cite{kluyver2016jupyter} or as ready-to-read PDF file. % -\begin{align} -\langle \phi_{\zeta} \rangle_S (z) = \frac{1}{N_S} \sum_{t\in S} \phi(x_\zeta, y_\zeta, z, t). -\end{align} -\\ -The described analysis is automatically done within developed framework that is driving the coupled \esm, as it will be published elsewhere with technical details. +The Jupyter Notebook format enables the user to adapt the individual plotting scripts to customize figures to be used in publications or other documents. +% +An example of two validation reports in the PDF format can be found in \Sec{sec:appendix}. + \section{Impact of the chosen exchange grid} @@ -591,6 +563,28 @@ One can suppose from \Fig{fig:remappings-atmos}, that largest local inconsistenc The impact of these inconsistencies is quantitatively discussed in \open{\Sec{???}}. +\subsection{Instability with atmospheric exchange} + +\begin{figure*} + \centering + \begin{subfigure}[t]{0.49\textwidth} + \includegraphics[width=\linewidth]{"./figures/MSTSUR02_and_grids.pdf"} + \caption{\label{fig:SST-crash} Surface temperature.} + \end{subfigure} + \hfill + \begin{subfigure}[t]{0.49\textwidth} + \includegraphics[width=\linewidth]{"./figures/MRMEVA02_and_grids.pdf"} + \caption{\label{fig:EVAP-crash} Evaporation.} + \end{subfigure} + \\ + \begin{subfigure}[t]{0.49\textwidth} + \includegraphics[width=\linewidth]{"./figures/critical_point.pdf"} + \caption{\label{fig:time-series-crash} Time series for particular point.} + \end{subfigure} + \caption{\label{fig:crash}\textbf{Ocean variables directly before instability.} + } +\end{figure*} + \section{Results of the uncorrected model} \subsection{Atmospheric model output from \cclm} @@ -760,4 +754,13 @@ See \Fig{fig:FI_anomalies}. \bibliography{all} %\bibliography{test} +\newpage +\section{Appendix} +\label{sec:appendix} +\subsection{Validation of the ocean model} +\includepdf[pages=-]{./appendix/validation_report_MOM5_Baltic.pdf} + +\subsection{Validation of the atmospheric model} +\includepdf[pages=-]{./appendix/validation_report_CCLM_Eurocordex.pdf} + \end{document} \ No newline at end of file